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Abstract 

The general psychopathology factor (p-factor) represents shared variance across mental disorders based on 

psychopathologic symptoms. The Adolescent Brain Cognitive Development (ABCD) Study offers an 

unprecedented opportunity to investigate functional networks (FNs) from functional magnetic resonance 

imaging (fMRI) associated with the psychopathology of an adolescent cohort (n > 10,000). However, the 

heterogeneities associated with the use of multiple sites and multiple scanners in the ABCD Study need to 

be overcome to improve the prediction of the p-factor using fMRI. We proposed a scanner-generalization 

neural network (SGNN) to predict the individual p-factor by systematically reducing the scanner effect for 

resting-state functional connectivity (RSFC). We included 6,905 adolescents from 18 sites whose fMRI 

data were collected using either Siemens or GE scanners. The p-factor was estimated based on the Child 

Behavior Checklist (CBCL) scores available in the ABCD study using exploratory factor analysis. We 

evaluated the Pearson's correlation coefficients (CCs) for p-factor prediction via leave-one/two-site-out 

cross-validation (LOSOCV/LTSOCV) and identified important FNs from the weight features (WFs) of the 

SGNN. The CCs were higher for the SGNN than for alternative models when using both LOSOCV (0.1631 

± 0.0673 for the SGNN vs. 0.1497  0.0710 for kernel ridge regression [KRR]; p < 0.05 from a two-tailed 

paired t-test) and LTSOCV (0.1469  0.0381 for the SGNN vs. 0.1394  0.0359 for KRR; p = 0.01). It was 

found that (a) the default-mode and dorsal attention FNs were important for p-factor prediction, and (b) the 

intra-visual FN was important for scanner generalization. We demonstrated the efficacy of our novel SGNN 

model for p-factor prediction while simultaneously eliminating scanner-related confounding effects for 

RSFC.  
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1. Introduction 

Mental disorders often begin during childhood or adolescence and transition from adolescence to adulthood 

(Caspi et al., 2020). However, traditional diagnostic nosology is limited in its ability to diagnose and treat 

mental disorders due to high rates of comorbidity (Caspi et al., 2020), pervasive co-occurrence (Sha et al., 

2019), and complex heterogeneity (5). Thus, there has been growing interest in alternative transdiagnostic 

approaches such as the Research Domain Criteria Initiative (RDoC) (Kozak and Cuthbert, 2016) and the 

Hierarchical Taxonomy of Psychopathology (HiTOP) (Kotov et al., 2021, 2017). The general 

psychopathology factor (p-factor) in the HiTOP is a single latent dimension underlying the structure of 

psychopathology (Caspi et al., 2014) that represents shared variance across a wide range of mental disorders 

(Michelini et al., 2019). The efficacy of the p-factor has consistently been demonstrated (Caspi and Moffitt, 

2018; Laceulle et al., 2020).  

 

Neural substrates for the p-factor have been investigated using functional networks (FNs) obtained 

from resting-state functional magnetic resonance imaging (rfMRI). The utility of rfMRI in investigating 

various mental disorders has been demonstrated (Canario et al., 2021; Hull et al., 2017; Mwansisya et al., 

2017; Parkes et al., 2021), and this has been facilitated by the emergence of large-scale neuroimaging 

datasets (Martino et al., 2014; Smith et al., 2013; Thompson et al., 2020). Particularly, resting-state 

functional connectivity (RSFC) has been instrumental in identifying the functional features of rfMRI 

because, unlike task-based fMRI, there is no task paradigm associated with rfMRI to estimate neuronal 

activations. Thus, there have been a number of studies investigating the abnormal RSFC features of rfMRI 

in mental disorders during the developmental period, including general psychopathology (Elliott et al., 2018; 

Karcher et al., 2021, 2019; Parkes et al., 2020). 

 

Traditionally, statistical approaches and machine learning models have been employed for the 

analysis of rfMRI datasets (Barber et al., 2019; Kebets et al., 2019; Romer et al., 2021; Sripada et al., 2021; 
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Xia et al., 2018). However, a significant issue when utilizing large-scale rfMRI datasets is the heterogeneity 

of the data acquired from different sites. In particular, the diversity of the MRI scanners used in practice 

has led to non-biological variance in rfMRI datasets (Fortin et al., 2017; Yu et al., 2018). The neutralization 

of this scanner effect is urgently needed for data harmonization, but it is difficult to simultaneously predict 

psychopathology and reduce heterogeneity across a dataset using traditional machine learning and statistical 

models such as ComBat (Beer et al., 2020). 

 

Recently, several studies have employed deep learning techniques such as domain adaptation to 

reduce or eliminate scanner-related heterogeneity in neuroimaging datasets (Dinsdale et al., 2021; Guan et 

al., 2021; Zhao et al., 2020). Many of these studies have relied heavily on T1-weighted MRI and diffusion 

tensor imaging, with only a few focusing on rfMRI (Yu et al., 2018). Moreover, most studies have utilized 

convolutional neural network (CNN) architectures that have been developed for 2D images or 3D volumes 

(Schulz et al., 2020; Vu et al., 2020), making them unsuitable for the direct analysis of RSFC in rfMRI 

because the spatial structure of 2D RSFC patterns is somewhat arbitrarily determined based on the order of 

the brain regions, unlike 2D image or 3D volume patterns. 

 

In the present study, we were motivated to develop a deep neural network (DNN) to predict the p-

factor while explicitly modeling the scanner effect on RSFC in a large-scale rfMRI dataset. The efficacy of 

our proposed scanner-generalization neural network (SGNN) model was evaluated using the Adolescent 

Brain Cognitive Development (ABCD) Study dataset, which has collected neuroimaging and 

psychopathological data from over 10,000 adolescents. We hypothesized that the SGNN could identify any 

close link between the RSFC and the p-factor of adolescents in the ABCD study. We also hypothesized that 

the p-factor prediction performance of our SGNN would be superior to machine learning models due to its 

inclusion of explicit scanner effect generalization. We also investigated the FNs specifically associated with 

p-factor prediction and scanner effect generalization based on the interpretation of the trained SGNN.  
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2. Materials and methods 

2.1. Participants 

The ABCD study is a longitudinal study in the United States that has collected neuroimaging, behavior, 

and genetic data from adolescents (n = 11,875; ages 9–10; 52% males) to investigate their biological and 

behavioral development (https://abcdstudy.org). The ABCD study includes participants with a suitable age 

range and attendance at a public or private elementary school. Elementary schools were selected from 21 

sites based on race and ethnicity, urbanicity, gender, and socioeconomic status, recruiting over 11,000 

children, representing over 20% of the entire US population of 9- to 10-year-olds. More details about the 

recruitment process are available in a previous paper (Garavan et al., 2018). The exclusion criteria were as 

follows: not being fluent in English or with a parent not fluent in English or Spanish, significant medical or 

neurological conditions, contraindications to MRI scanning, a gestational age under 28 weeks or a 

birthweight over 1200 g, a history of traumatic brain injuries, a current diagnosis of schizophrenia, 

moderate/severe autism spectrum disorder, intellectual disability, and alcohol/substance use disorder. More 

details regarding the inclusion/exclusion criteria are available in previous studies (Garavan et al., 2018; 

Michelini et al., 2019). Most of the sites were approved by the central Institutional Review Board (IRB) at 

the University of California, San Diego, except for some sites with individual site IRBs (e.g., Washington 

University in St. Louis). All of the procedures were fully explained to the parents or guardians, and the 

children agreed before participating in the study, with written informed consent provided (Michelini et al., 

2019). 

 

 We obtained demographic/behavioral data, brain imaging data including structural/functional MRI 

data, and genetics data from the ABCD study (Casey et al., 2018) 2.0.1 release via the NIMH Data Archive 

(NDA; https://data-archive.nimh.nih.gov/abcd). Twenty-one sites participated using 3-T MRI scanners for 

neuroimaging data acquisition (13 sites with the Prisma from Siemens, five sites with the MR750 from GE, 

and three sites with the Achieva dStream from Philips). The three sites with Philips scanners were excluded 
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from the analysis because we wanted to evaluate the ability of the proposed SGNN model to generalize the 

data from two scanners while including as many adolescents as possible. Of the included sites, those 

subjects (i) whose rfMRI runs did not pass quality control from the ABCD Data Analysis and Informatics 

Center or (ii) whose Child Behavior Checklist (CBCL) data were missing, meaning that the p-factor could 

not be determined (Achenbach and Rescorla, 2001), were excluded. As a result, 6,905 children across the 

18 sites (Table S1) were included (Fig. 1A), with slightly more males (Fig. 1B). 

 

2.2. Resting-State Functional Connectivity (RSFC) 

The participants underwent four five-minute rfMRI scans with blood-oxygen-level-dependent (BOLD) 

contrast acquired using a gradient-echo echo-planar imaging pulse sequence (repetition time = 800 ms; 

echo time = 30 ms; 2.4 mm isotropic voxel size; flip angle = 90˚). The participants were instructed to open 

their eyes and fixate on a crosshair on the screen (Casey et al., 2018). The rfMRI data were preprocessed 

via the ABCD-HCP pipeline (https://github.com/DCAN-Labs/abcd-hcp-pipeline), which is a modification 

of the HCP pipeline (Glasser et al., 2013). The pipeline included distortion correction, volume alignment, 

respiration-induced motion filtering, head-motion censoring based on framewise displacement (FD; > 0.2 

mm), and projection onto the cortical surface of FreeSurfer (Marek et al., 2019). Details of the imaging 

parameters for each scanner type and the preprocessing schemes are available in previous reports (Casey et 

al., 2018). 

 

 The preprocessed BOLD rfMRI volumes were parcellated based on the 333 cortical region-of-

interest (ROIs) in the Gordon atlas (Gordon et al., 2016) and 19 subcortical ROIs 

(https://collection3165.readthedocs.io), and the average BOLD time series was obtained for each ROI. We 

decided to use 13 FNs based on the Gordon atlas because this parcellation scheme has been widely adopted 

in a number of studies to investigate the abnormal functional features of mental disorders, including general 

psychopathology, using the RSFC obtained from the ABCD study (Ellwood-Lowe et al., 2021; Karcher et 

al., 2021; Marek et al., 2019; Michelini et al., 2019; Sripada et al., 2021). The RSFC matrix was then 
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calculated using Pearson’s correlation coefficients (CCs) for the average BOLD time series of paired ROIs, 

followed by Fisher’s r-to-z transformation. We extracted the lower triangular elements from the symmetric 

RSFC matrix (excluding the diagonal elements) and vectorized them for input into the predictive models. 

There were 61,776 RSFC edges across the 352 ROIs (352C2; Fig 1C). Each of the 352 ROIs was assigned 

to one of the 13 FNs (i.e., auditory, cingulo-opercular, cingulo-parietal, dorsal attention [DAN], default-

mode [DMN], frontoparietal, retrosplenial-temporal, salience, subcortical, somatomotor-hand [SMH], 

somatomotor-mouth, ventral attention, and visual [VIS]) or labeled as unassigned. 

 

2.3. General Psychopathology Factor (p-factor) 

The p-factor is located at the apex of hierarchical dimensional systems derived from the CBCL scores 

reported by parents via the merging of the externalizing and internalizing dimensions (Michelini et al., 

2019). The CBCL scores represent children's behavioral symptoms within the past six months based on 119 

items measured on a 3-point scale (0 – not true; 1 – sometimes true; 2 – very true) (Michelini et al., 2019). 

As the p-factor of an individual increases, they can demonstrate higher overall psychopathology, deficits in 

brain development and cognitive functioning, dysfunction in social communication, and overall life 

impairment (Caspi and Moffitt, 2018).  

 

2.4. Scanner-Generalization Neural Network (SGNN) 

Figure 1D presents our proposed SGNN inspired by domain-adversarial neural networks (Ganin et al., 

2015). The goal of the SGNN is to predict the p-factor while reducing the scanner-specific heterogeneity 

for RSFC. Our proposed SGNN model consists of three components: (i) the feature extractor, (ii) the p-

factor predictor, and (iii) the scanner discriminator. We adopted adversarial learning to train the SGNN. 

Specifically, the loss term that maximizes the scanner discrimination performance was negatively added to 

the loss term used to enhance the prediction of the p-factor, thus reducing scanner-specific heterogeneity in 

the p-factor prediction process. Please see the supplementary section, "Training algorithm for our 
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proposed scanner-generalization neural network (SGNN)." The scanner discriminator was attached to the 

feature extractor via a gradient reversal layer with control parameter  (Fig. 1D).  

 

We employed explicit L1-norm regularization, which is a weight sparsity control scheme, to 

prevent potential overfitting of the SGNN model, thus enhancing the generalization performance (Jang et 

al., 2017; Kim et al., 2019, 2016). In this scheme, the sparsity level of the weight of each layer was 

systematically controlled to find an optimal set of features from the high-dimensional input features by 

pruning irrelevant features (Kim et al., 2016). The SGNN was trained for 150 epochs using the Nesterov 

accelerated gradient optimizer with a momentum factor of 0.9, a batch size of 32, and a learning rate of 10-

5. The L2 regularization parameter was 0.05. The proposed SGNN was implemented using PyTorch 1.9.1 

(https://pytorch.org/) in Python 3.6. The SGNN code and sample data are publicly available at our GitHub 

repository (https://github.com/bsplku/SGNN).  

 

2.5. Leave-One-Site-Out and Leave-Two-Site-Out Cross-Validation 

We aimed to build an SGNN model that was invariant to the MRI scanner effect when predicting the p-

factor. Thus, we divided the entire dataset into training, validation, and test data based on site information 

because each site is equipped with its own MRI scanner. Specifically, we adopted nested leave-one-site-

out and leave-two-site-out cross-validation (LOSOCV and LTSOCV, respectively) to evaluate the p-factor 

prediction performance (Fig. 2A), thus preventing potential double-dipping issues (Kriegeskorte et al., 

2006). The data from one site and two sites were used as independent test samples in the outer loop of the 

nested LOSOCV and LTSOCV schemes, respectively. The remaining sites were divided into training and 

validation folds in the inner loop for hyperparameter optimization (i.e., the weight sparsity level in the 

feature extractor layer and the  value). One randomly selected Siemens scanner site and another randomly 

selected GE scanner site were included in the validation fold. 
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The candidate weight sparsity levels for the feature extractor were set from the lower to higher 

sparsity level (i.e., 0.5, 0.8, 0.9, 0.975, 0.98, and 0.99, with 1 being the sparsest case), and the candidate  

values were 0, 0.002, 0.005, 0.01, and 0.02. The validation performance was obtained for each of the 

combinatorial scenarios of the two hyperparameters using the validation data based on the mean absolute 

error (MAE) between the predicted and target p-factor scores (Abrol et al., 2021; Schulz et al., 2020). The 

validation phase was repeated five times for the two randomly selected validation sites, and an optimal set 

of hyperparameters was selected from the best average validation performance. The prediction performance 

of the SGNN with the test data was measured using the CCs between the predicted and target p-factor scores 

and their MAE.  

 

We also evaluated the possibility of improving the performance by pre-training either the p-factor 

predictor or scanner discriminator. In pre-training the p-factor predictor branch, only the weights/biases of 

the feature extractor layer and p-factor predictor were updated during the pre-training phase while those of 

the scanner discriminator were frozen until a pre-defined epoch (i.e., from 10 to 50 epochs at intervals of 

10). In pre-training the scanner discriminator branch, only the weights/biases of the feature extractor layer 

and scanner discriminator were updated while those of the p-factor predictor branch were frozen until the 

pre-defined epoch.  

 

2.6. Interpretation of the trained SGNN 

We also interpreted the weight features (WFs) of the trained SGNN (Jang et al., 2017; Kim et al., 2019, 

2016). Figure 2B illustrates the WF representations obtained by multiplying the weights across the layers. 

The WF representations for the p-factor predictor and scanner discriminator branches obtained from all of 

the trained models across the CV schemes were averaged (i.e., n = 18 from LOSOCV; n = 65 from 

LTSOCV). The average WF represented the pairwise weighting factors between the 352 ROIs. The average 

WF was also interpreted for the FN levels, in which the weighting factors for the WFs in the ROI levels 

were averaged for each of the 13 FNs (Fig. S3), followed by pseudo-z-scoring. The WFs obtained for the 
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FN levels provided information on the importance of the FNs for p-factor prediction and scanner 

generalization. The WFs for the ROI level were visualized at a 99.9th percentile threshold (i.e., the edges 

above the top 0.1% intensity) using BrainNet Viewer (“BrainNet Viewer: A Network Visualization Tool 

for Human Brain Connectomics,” n.d.) for the brain surface and as a circular graph using NeuroMArVL 

(http://marvl.infotech.monash.edu.au/). We calculated the reliability of the WF patterns for the p-factor 

predictor and scanner discriminator obtained from LOSOCV and LTSOCV via the intraclass correlation 

coefficients using the pingouin 0.5.0 library in Python 3.6 (Koo and Li, 2016).  

 

2.7. Machine Learning  models 

We evaluated several machine learning models (available in the Scikit-Learn package 0.24.1 of Python 3.6) 

for p-factor prediction, including logistic regression (LR), LR with L1/L2 regularization (i.e., lasso/ridge 

regression), kernel ridge regression (KRR) with a radial basis function (RBF), polynomial, and sigmoid 

function, partial least square regression (PLS), and support vector machine-based regression (SVR). We 

conducted hyperparameter optimization as much as possible for each of the alternative machine learning 

models via a grid search using the same sets of training, validation, and test data that were used for the 

SGNN in the nested LOSOCV/LTSOCV frameworks. The resulting performance obtained from the SGNN 

and alternative machine learning models was compared using two-tailed paired-sample t-tests. 

 

2.8. p-factor prediction with age and sex as covariates 

We also performed the p-factor prediction by considering age and sex as covariates in the RSFC and p-

factor. In detail, we regressed out these nuisance variables in the RSFC and p-factor using linear regression 

as follows (Rakesh et al., 2021): 

𝒚 = 𝒙𝑎𝑔𝑒𝛽𝑎𝑔𝑒 + 𝒙𝑠𝑒𝑥𝛽𝑠𝑒𝑥 + 𝜀, 

where 𝒚 is either the original RSFC edge or original p-factor score,  𝒙𝑎𝑔𝑒 and 𝒙𝑠𝑒𝑥 are age (months) and 

sex (1 for male and 0 for female) of participants, respectively. Once the parameter estimates (𝛽𝑎𝑔𝑒 and 𝛽𝑠𝑒𝑥) 
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were calculated via a least-squares algorithm, the RSFC edge or p-factor score that was adjusted using the 

age and sex confounders was obtained as follows: 

𝒚̂ = 𝒚 − (𝒙𝑎𝑔𝑒𝛽𝑎𝑔𝑒 + 𝒙𝑠𝑒𝑥𝛽𝑠𝑒𝑥). 

Using the age/sex-adjusted RSFC edges and p-factor scores, we conducted the p-factor prediction by 

deploying SGNN and KRR in the LOSOCV/LTSOCV frameworks. The resulting performance was 

compared using two-tailed paired-sample t-tests.  

 

3. Results 

3.1. p-factor prediction 

The minimum, maximum, mean, and standard deviation of the p-factor across all 6,905 participants were 

−1.721, 3.333, 0.037, and 0.929, respectively. Figures 3 and S4 present the p-factor prediction performance 

for the LOSOCV and LTSOCV, respectively. Overall, the proposed SGNN exhibited superior performance 

compared to the alternative machine learning models (F-score = 33.36 and p < 10-10 from one-way ANOVA). 

The performance of the SGNN (CC = 0.1631 ± 0.0673; MAE = 0.7411 ± 0.0433) was significantly higher 

than that of the best performing KRR (CC = 0.1497 ± 0.0710; MAE = 0.7432 ± 0.0438; p < 0.05 from a 

two-tailed paired-sample t-test) for LOSOCV (Fig. 3). A similar trend was observed for LTSOCV, though 

the performance was slightly lower (CC = 0.1469 ± 0.0381 and MAE = 0.7329 ± 0.0233 for SGNN vs. CC 

= 0.1394 ± 0.0359 and MAE = 0.7344 ± 0.0230 for KRR; p < 0.05) (Fig. S4).  

 

 Figure S5 illustrates the p-factor prediction performance from the SGNN and KRR models by 

comparing before and after the removal of age/sex-related confounders in the RSFC edges and p-factor 

scores. Overall, prediction performance was compromised after removing age/sex-related confounders. 

However, the proposed SGNN showed better prediction performance than KRR, the best-performing 

machine learning model (Fig. 3 and Fig. S4) commonly across the two CV frameworks: (A) LOSOCV (CC 
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= 0.1419 ± 0.0655 and MAE = 0.7401 ± 0.0459 for SGNN vs. CC = 0.1238 ± 0.0640 and MAE = 0.7419 

± 0.0419 for KRR; p < 0.05 from two-tailed paired-sample t-test) and (B) LTSOCV (CC = 0.1295 ± 0.0340 

and MAE = 0.7348 ± 0.0283 for SGNN vs. CC = 0.1156 ± 0.0335 and MAE = 0.7359 ± 0.0230 for KRR; 

p < 0.001 from two-tailed paired-sample t-test).  

 

3.2. Hyperparameter tuning and pre-training  

Figure 4 shows the results for hyperparameter tuning and pre-training in LOSOCV. First, high levels of 

weight sparsity for the feature extractor (i.e., 0.975, 0.98, and 0.99) improved the validation CC 

performance compared to lower sparsity levels (i.e., 0.5, 0.8, and 0.9) despite the lower CC for the training 

data, which was indicative of less overfitting (p < 10-10 for both the training and validation data from one-

way ANOVA; Fig. 4A,B). A moderate level of  (i.e., 0.01) was selected most frequently as the optimal 

value for scanner generalization (Fig. 4C) and led to slightly higher validation CCs with a lower degree of 

overfitting (Fig. 4D). The moderate  values (i.e., 0.005 and 0.01) produced approximately chance-level 

accuracy for scanner discrimination (Fig. 4E). The pre-training of weights in the p-factor predictor 

enhanced p-factor prediction performance, whereas the pre-training of weights in the scanner discriminator 

had the opposite effect (Fig. 4F).  

 

3.3. Important FNs for p-factor prediction and scanner generalization 

Figure 5 illustrates the WFs of the p-factor predictor from the SGNN trained with LOSOCV. Overall, the 

WF representations for the intra-FNs exhibited strong negative weights within the DAN and within the 

DMN and strong positive weights between the DAN and DMN and within the VIS (Fig. 5A). The WF 

representations at the ROI level also showed strong intra- and inter-FN connectivity (Fig. 5B,C). From the 

WFs of the scanner discriminator, strong positive weights within the VIS network were evident, and 

moderate negative weights within the DAN, DMN, and SMH were also observed at the FN level (Fig. 6A) 

and the ROI level (Fig. 6B, C). The WF representations for the SGNN with LTSOCV demonstrated similar 
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patterns to those with LOSOCV (r = 0.99 for p-factor predictor; r = 0.92 for scanner discriminator; corrected 

p < 10-10 for both cases from bootstrap tests with 10,000 iterations; Figs. S6 and S7). The intraclass 

correlation coefficients for each of the WF patterns in the p-factor predictor and scanner discriminator 

showed reliability levels greater than 0.75.  

 

4. Discussion 

4.1. Summary 

We developed an artificial neural network-based computational model that can predict the p-factor using 

RSFC by explicitly modeling the heterogeneity of the RSFC acquired with multiple scanners across 

multiple study sites. Our proposed SGNN model was tested with approximately 7,000 subjects across 18 

sites from the ABCD Study. The p-factor prediction performance of our SGNN model (CC = 0.1631 with 

LOSOCV and 0.1469 with LTSOCV) was superior to machine learning models (i.e., KRR; CC = 0.1497 

and 0.1394; p < 0.05). The weight features for the SGNN revealed the importance of intra- and inter-FN 

connectivity with the DMN and DAN for the prediction of general psychopathology and the potentially 

influential intra-VIS network connectivity for the generalization of scanner-specific heterogeneity. To the 

best of our knowledge, this is the first study to show the efficacy of a deep neural network model for p-

factor prediction among adolescents using RSFC from the ABCD Study while simultaneously removing 

scanner-related heterogeneity. We believe that our proposed SGNN model can be extended to other large-

scale neuroimaging datasets with multiple sites and scanner types and be used to predict other phenotypic 

characteristics as part of transdiagnostic dimensional approaches in addition to traditional diagnostic labels 

for mental disorders.  

 

4.2. Neural substrates for the general psychopathology of adolescents 

The DMN, known for its pivotal role in self-referential processing, has been consistently reported to be an 

essential neural signature for a diverse range of symptoms and mental disorders, including attention deficit 
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hyperactivity disorder (Uddin et al., 2008), depression (Sheline et al., 2009), bipolar disorder, and 

schizophrenia (Öngür et al., 2010). Furthermore, DMN dysconnectivity has been associated with general 

psychopathology, especially neurodevelopmental problems (Karcher et al., 2021; Sripada et al., 2021). In 

line with these studies, based on WF analysis of the SGNN, we found that changes to within-DMN 

connectivity were a crucial neural substrate for general psychopathology. The WF of the p-factor predictor 

in our SGNN also suggested that within-DAN dysconnectivity was strongly associated with the general 

psychopathology of adolescents, which is in agreement with recent studies (Brennan et al., 2018; Guo et 

al., 2018; Karcher et al., 2021; Lees et al., 2021; Sripada et al., 2021). Because the DAN plays an essential 

role in top-down cognitive control for external stimuli and internal responses, we can infer that within-DAN 

RSFC impairment reduces general cognitive functioning and increases the risk of general psychopathology 

(Corbetta et al., 2008; Huang et al., 2018; Zelazo, 2020). 

 

The RSFC between the DMN and DAN has a negative correlation because they are core task-

negative and task-positive FNs, respectively (Fox et al., 2005). This negative correlation has a central role 

in internalizing and externalizing functions (Keller et al., 2015; Whitfield-Gabrieli and Ford, 2012). Thus, 

abnormalities in this connection (i.e., a weaker negative correlation) have been associated with mental 

disorders (Esposito et al., 2018; Huang et al., 2018; Spreng et al., 2016). The strong positive weights for 

the inter-FNs between the DMN and DAN found in the present study are in line with these previous reports. 

The positive weights within the VIS network were also notable. The VIS network is not commonly regarded 

as an essential network for psychopathology. However, previous studies have pointed out that dysfunction 

in visual networks may reflect the impairment of the low-level integration of external visual information, 

thereby leading to deficits in the higher-order cognitive processing (Elliott et al., 2018; Shaffer et al., 2018; 

van de Ven et al., 2017).  
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4.3. Neural substrates for scanner effect generalization 

A previous study reported significant heterogeneity in RSFC from the ABCD dataset associated with MRI 

scanners (i.e., Siemens vs. GE/Philips), particularly within the VIS network (Marek et al., 2019). This was 

observed using a relatively small number of ABCD samples that were divided into a discovery set (n = 

1,166) and a replication set (n = 1,022) with statistical approaches including ANOVA (cf. n = 6,905 for our 

study). The harmonization of data from multiple sites and scanners is important when seeking to maximize 

the prediction power using extensive neuroimaging datasets. However, few studies have addressed this by 

mainly employing statistical methods (Fortin et al., 2017; Yu et al., 2018). Our proposed SGNN is able to 

reduce this heterogeneity across multiple sites and scanners, simultaneously predicting target values without 

the need for stringent prior assumptions about the data distribution. In addition to the positive WFs for the 

within-VIS network, the negative WFs for the within-SMH and within-DMN FNs were also moderately 

associated with scanner-related heterogeneity, which requires more detailed future research.  

 

4.4. SGNN optimization via the weight sparsity level and scanner generalization 

Stringent weight sparsity levels in the feature extractor layer alleviated the degree of overfitting for the 

SGNN (Fig. 4A, B) because of the lower number of non-zero weights from L1-norm regularization. A 

weight sparsity level of 0.975 was selected as the optimal level for most of the outer folds (16 of 18). Neither 

the highest (0.99) nor the lowest (0.5) sparsity levels were selected as optimal, possibly due to slight 

underfitting (CC = 0.375 ± 0.023 from the training data vs. 0.144 ± 0.011 from the validation data for a 

sparsity level of 0.99) and substantial overfitting (CC = 0.956 ± 0.002 from the training data vs. 0.074 ± 

0.012 from the validation data at 0.5).  

 

The  parameter also controlled the degree of overfitting. The best validation performance was 

obtained from a moderate level of  (i.e., 0.01; Fig. 4C), and the highest  value exhibited signs of 

overfitting (Fig. 4D). Scanner generalization was achieved in our SGNN using this hyperparameter (Fig. 
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4E). When scanner generalization was not considered or only marginal (i.e.,  = 0 or 0.002), the scanner 

classification accuracy was substantially higher than chance (i.e., 50%). As the  value increased (i.e., 

between 0.005 and 0.01), the scanner classification accuracy fell to the level of chance (i.e., the generalized 

scanner effect), suggesting that the feature extractor layer may have learned the weights that were not 

sensitive to the two scanners. Larger  values (i.e., 0.02) led to an inversion of the predicted scanners. Other 

potential hyperparameters such as the learning rate, batch size, number of hidden layers, and number of 

hidden nodes were fixed to prevent an exhaustive search of the hyperparameters. Thus, it is possible that 

the prediction performance can be improved further. An optimal pre-training scheme for the weights in the 

feature extractor layer and the p-factor predictor branch of the SGNN (Fig. 4F) may also improve the 

prediction accuracy for the p-factor, which warrants further investigation.   

 

4.5. Strengths, limitations, and future work 

The present study has a number of significant implications. First, we developed a novel deep neural network 

model for p-factor prediction by employing domain adaption to reduce the heterogeneity arising from the 

use of multiple scanners within the large-scale, multiple-site ABCD Study dataset. Our proposed SGNN 

model exhibited a prediction performance that was superior to alternative machine learning models. We 

employed thorough cross-validation schemes (i.e., LOSOCV/LTSOCV) to evaluate the performance, 

unlike previous approaches that did not explicitly consider multiple sites and scanners in CV schemes 

(Karcher et al., 2021; Wang et al., 2021). Our work and prior studies consistently identified deficits in the 

RSFC within the DMN and within the DAN as strong evidence associated with general psychopathology. 

In addition, we reported the relatively novel finding that the p-factor increases when the RSFC between the 

DMN and DAN is a weaker negative correlation based on the strong positive weights for the SGNN 

between the two FNs. It is worth noting that the essential FNs associated with general psychopathology in 

the present study were identified using the SGNN model, which minimized multi-scanner heterogeneity 

within the ABCD Study dataset.  
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 It is also important to note several limitations of the present study and suggest future work. First, 

we only considered the generalization of two scanners using our SGNN model. We excluded the data 

acquired from the Philips scanner due to the lack of sites (n = 3) and the relatively low number of subjects 

(n = 730). Because we employed LOSOCV or LTSOCV to optimize and evaluate our SGNN, there would 

be only one site with a Philips scanner for the training and validation sets. Our proposed SGNN model can 

be further validated using other large-scale datasets such as the Philadelphia Neurodevelopmental Cohort 

(Satterthwaite et al., 2016) and the Human Connectome Project in Development (HCP-D) (Somerville et 

al., 2018). This future validation could interrogate our reported findings, including the efficacy of our 

SGNN and the reliability of the extracted FNs for p-factor prediction and scanner-effect generalization. 

Additionally, we only utilized cross-sectional samples from the ABCD Study. Longitudinal samples from 

this dataset and other cohorts such as the HCP-D would enable the investigation of neural substrates of 

psychopathology according to the neurodevelopmental phase. Moreover, sex and age also have an impact 

on both psychopathology and RSFC (Alarcón et al., 2015; Michelini et al., 2019). Our results indicated that 

the age/sex confounders were helpful for the prediction of the p-factor using RSFC (Fig. S5). However, the 

neuronal signatures of p-factor in RSFC have still been preserved after removing these confounders and the 

p-factor prediction performance of SGNN was superior to KRR. We believe that our approach to reducing 

age/sex-related confounding effects may not be optimal although it has been used in previous study (Rakesh 

et al., 2021). Alternative approaches such as embedding the age and sex information explicitly into the 

neural network models can be gainfully utilized (Zhao et al., 2022).  

 

 Our work investigated the performance of the SGNN for p-factor prediction. Future studies can 

extend our SGNN model to predict factor scores for low-ranked dimensions such as externalizing and 

internalizing spectra (Karcher et al., 2021; Michelini et al., 2019). As an extension, neural correlates of the 

RSFC could be identified in a symptom-specific manner, and neural biomarkers could be validated across 

psychopathology dimensions in a transdiagnostic system by combining multiple large-scale neuroimaging 
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datasets. In addition, future work can consider additional validation of the current study by investigating (i) 

alternative inputs for the SGNN such as dynamic RSFC patterns with sliding windows (Hutchison et al., 

2013), (ii) alternative p-factor scores from other assessment systems available in the ABCD Study such as 

the self-reported CBCL and the Kiddie Schedule for Affective Disorders and Schizophrenia (Lees et al., 

2021) or the use of alternative techniques to derive the p-factor (Barber et al., 2019; Kaczkurkin et al., 2018; 

Kebets et al., 2019; Norbom et al., 2019; Romer et al., 2021), or (iii) alternative parcellation schemes 

(Glasser et al., 2013; Shen et al., 2013; Tzourio-Mazoyer et al., 2002).  

 

 

4.6. Conclusions 

We proposed a deep neural network model (SGNN) that can predict the p-factor using RSFC and extract 

associated FNs while simultaneously generalizing the heterogeneity that arises from the use of multiple 

MRI scanners. We demonstrated the efficacy of our model compared to alternative machine learning 

models based on its consistently superior p-factor prediction performance using systematic cross-validation 

schemes. We identified novel and reproducible FN features for general psychopathology and scanner 

generalization. Our proposed method can be employed with cohorts other than adolescents and with 

alternative large-scale neuroimaging datasets. 
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Figure legends 

Figure 1. The number of participants by site and the SGNN architecture. (A) The number of subjects for 

each of the 18 included sites scanned with either the Siemens or GE scanner. (B) The number of male and 

female subjects acquired using each of the two scanners. (C) RSFC data were extracted from the 

preprocessed rfMRI data using the 352 ROIs. (D) Schematic of the SGNN. The vectorized RSFC (dim = 

61,776) was used as input for the SGNN. In the training phase of the SGNN, the feature extractor layer 

learned the features of the RSFC input to predict the p-factor and remove scanner-induced heterogeneity 

via the subsequent p-factor predictor and scanner discriminator branches, respectively. The p-factor 

predictor has only one output node with a linear activation function to predict the p-factor. The scanner 

discriminator has two output nodes with a softmax layer for the binary classification of the scanner labels. 

SGNN, scanner-generalization neural network; RSFC, resting-state functional connectivity; rfMRI, resting-

state functional magnetic resonance imaging; ROIs, regions-of-interest; p-factor, general psychopathology 

factor. 

 

Figure 2. The LOSOCV and LTSOCV frameworks and weight feature (WF) representation for the SGNN. 

(A) Two nested CV schemes were used to train, validate, and test the SGNN and machine learning models. 

The hyperparameters of the models were optimized in the inner CV loop based on the validation 

performance, and the optimized model was tested in the outer CV loop using the test data. (B) The WF 

representation was calculated for the p-factor predictor and scanner discriminator branches of the SGNN 

by multiplying the weight matrices in each branch. LOSOCV, leave-one-site-out cross-validation; 

LTSOCV, leave-two-site-out cross-validation; SGNN, scanner-generalization neural network; PP, p-factor 

predictor; SCD, scanner discriminator. 
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Figure 3. The p-factor prediction performance of the models with LOSOCV. (A) The CCs for the target 

and predicted p-factors are presented as a box-whisker plot (left; inter-quartile range as the box with the 

median and 10th and 90th percentiles as the whiskers) and a bar plot (right; average CC). The SGNN model 

achieved a significantly higher average test CC (CC = 0.1631 ± 0.0673) than the best performing KRR 

model (CC = 0.1497 ± 0.0710; p < 0.05; two-tailed paired sample t-test). (B) Bar graphs for the MAE for 

the target and predicted p-factors. The SGNN model exhibited a significantly lower MAE (MAE = 0.7411 

± 0.0433) than the best performing KRR model (MAE = 0.7432 ± 0.0438; p < 0.05). CCs, Pearson's 

correlation coefficients; MAE, mean absolute error; KRR, kernel ridge regression; LR, linear regression; 

LRRidge, LR with L2-norm regularization; LRLasso, LR with L1-norm regularization; SVR, support vector 

machine-based regression; PLSReg, partial least square-based regression; SGNN, scanner-generalization 

neural network. 

 

Figure 4. Hyperparameter tuning and pre-training of the SGNN with LOSOCV. The CCs (A) for the 

training and (B) validation phases depending on the weight sparsity level for the FE are shown. (C)  The 

number of selected folds for the optimal lambda () value. (D) CCs for the training and validation phases 

for each of the  values (mean  standard error). (E) Scanner discrimination performance based on the 

 value. (F) CC performance curves for each of the two pre-training schemes.  CCs, Pearson's correlation 

coefficients; HSP, Hoyer’s sparseness level of the weight; FE, feature extractor; PRT, pre-training; PP, p-

factor predictor; SCD, scanner discriminator. 

 

 

 

 

 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



 26 

 
 

 

Figure 5. The representative weight features (WFs) for the p-factor predictor (PP) in the SGNN with 

LOSOCV. The WFs are presented (A) at the functional network (FN) level and (B,C) at a region-of-interest 

(ROI) level as a circular graph and on the cortical surface, respectively. Please refer to the subsections "2.6. 

Interpretation of the trained SGNN" and "3.3. Important FNs for p-factor prediction and scanner 

generalization" for more detail. LOSOCV, leave-one-site-out cross-validation. 

 

Figure 6. The representative weight features (WFs) for the scanner discriminator in the SGNN with 

LOSOCV. The WFs are presented (A) at the functional network (FN) level and (B,C) at a region-of-interest 

(ROI) level as a circular graph and on the cortical surface, respectively. Please refer to the subsections "2.6. 

Interpretation of the trained SGNN" and "3.3. Important FNs for p-factor prediction and scanner 

generalization" for more detail. LOSOCV, leave-one-site-out cross-validation. 
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