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a b s t r a c t 

Brain network interactions are commonly assessed via functional (network) connectivity, captured as an undi- 
rected matrix of Pearson correlation coefficients. Functional connectivity can represent static and dynamic rela- 
tions, but often these are modeled using a fixed choice for the data window Alternatively, deep learning models 
may flexibly learn various representations from the same data based on the model architecture and the training 
task. However, the representations produced by deep learning models are often difficult to interpret and require 
additional posthoc methods, e.g., saliency maps. In this work, we integrate the strengths of deep learning and 
functional connectivity methods while also mitigating their weaknesses. With interpretability in mind, we present 
a deep learning architecture that exposes a directed graph layer that represents what the model has learned about 
relevant brain connectivity. A surprising benefit of this architectural interpretability is significantly improved ac- 
curacy in discriminating controls and patients with schizophrenia, autism, and dementia, as well as age and 
gender prediction from functional MRI data. We also resolve the window size selection problem for dynamic 
directed connectivity estimation as we estimate windowing functions from the data, capturing what is needed to 
estimate the graph at each time-point. We demonstrate efficacy of our method in comparison with multiple exist- 
ing models that focus on classification accuracy, unlike our interpretability-focused architecture. Using the same 
data but training different models on their own discriminative tasks we are able to estimate task-specific directed 
connectivity matrices for each subject. Results show that the proposed approach is also more robust to confound- 
ing factors compared to standard dynamic functional connectivity models. The dynamic patterns captured by our 
model are naturally interpretable since they highlight the intervals in the signal that are most important for the 
prediction. The proposed approach reveals that differences in connectivity among sensorimotor networks relative 
to default-mode networks are an important indicator of dementia and gender. Dysconnectivity between networks, 
specially sensorimotor and visual, is linked with schizophrenic patients, however schizophrenic patients show in- 
creased intra-network default-mode connectivity compared to healthy controls. Sensorimotor connectivity was 
important for both dementia and schizophrenia prediction, but schizophrenia is more related to dysconnectivity 
between networks whereas, dementia bio-markers were mostly intra-network connectivity. 
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. Introduction 

Functional connectivity has emerged as a promising tool for un-
erstanding the brain’s functional architecture and has been widely
sed ( Greicius et al., 2003; Lee et al., 2013; Rogers et al., 2007; Van
en Heuvel and Pol, 2010a ). Disruptions in the brain’s functional con-
ectivity are often linked to brain disorders evident in patients’ be-
avior ( van den Heuvel and Pol, 2010b ). For example, schizophrenic
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atients have high level of functional dysconnectivity between brain
etworks ( Culbreth et al., 2021; Fu et al., 2017; Lynall et al., 2010;
organ et al., 2020; van den Heuvel et al., 2010; Yu et al., 2011;

hang et al., 2019; Zhu et al., 2020 ) and exhibit dysregulated dy-
amic connectivity across multiple brain networks ( Supekar et al.,
019 ). Alzheimer’s disease (AD) is also known to disrupt brain dy-
amics leading to wide-spread cognitive dysfunction ( Haan et al.,
011 ). 
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The association of brain disorders with abnormal static or dynamic
unctional connectivity highlights the need to develop models that
an identify disorder-specific connectivity aberrations. This observation
uides development of various approaches to brain connectivity analy-
is ( Arslan et al., 2018; Kazi et al., 2021; Kim and Ye, 2020; Ktena et al.,
017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan et al., 2017 ). How-
ver in most existing approaches, the functional connectivity matrices
re not informed by the prediction task but instead estimated prior to
raining; thus, they depend entirely on the chosen input window of data
amples. The independence from the downstream task results in inflexi-
le estimation of connectivity matrices as the estimate is unchanged re-
ardless of whether the task is to predict a brain disorder, age, or other
uantity. Kim et al. (2021) proposed a method where the functional con-
ectivity structure is computed based on the learned representations of
he data, but even this method lacks a learnable connectivity estima-
ion method. We argue that task-dependent connectivity matrices can
e estimated by a deep learning (DL) model using learnable weights. DL
odels are flexible in their ability to learn a variety of representations

rom the same data based on the architecture and ground-truth signal
sed in training. 

However, using a DL method to estimate a connectivity matrix can
e challenging without the presence of the ground-truth graph during
raining. Another problem of many DL models is lack of consistency
nd interpretability in the learned representations. Saliency maps com-
only used to address interpretability of these models ( Angelov et al.,
021; Lewis et al., 2021; Ras et al., 2021; Simonyan et al., 2014 ) may
e difficult to interpret ( Liu et al., 2021 ). Arguably, the difficulty of
nterpreting representations is the reason why studies using DL mod-
ls incorporate inflexible but interpretable feature selection steps for
onnectivity estimation, for example Pearson correlation coefficients
PCC) ( Freedman et al., 2007 ). 

In most of the current studies, functional connectivity estimates are
ither static or dynamically computed using a sliding window approach
ependent on the window size and stride ( Armstrong et al., 2016; Dama-
aju et al., 2014; Fu et al., 2020; 2018; Gadgil et al., 2021; Yao et al.,
020 ). Unable to capture non-stationarity, static matrices miss essential
nformation about dynamics. For example, dynamic functional connec-
ivity estimates show re-occurring patterns which cannot be captured
y their static counterparts ( Allen et al., 2012; Calhoun et al., 2014;
utchison et al., 2013 ). Using a static graph learning method to capture
 dynamical system may reduce classification performance ( Xu et al.,
020 ). Kipf et al. (2018) show improved results by just dynamically
e-evaluating the learned static graph during testing. The improved per-
ormance for the relevant task is understandable as the dynamic con-
ectivity provides essential information about the system, for instance,
apturing re-occurring patterns. The brain’s functional activity is also
erceived to be highly dynamic and hence cannot be faithfully cap-
ured with a static or even window-based approach ( Yaesoubi et al.,
018 ). 

Furthermore, studies using functional connectivity to measure con-
ectivity between brain regions or networks do not capture the direction
f interaction and only measure undirected statistical dependence such
s correlations, coherence, or transfer entropy. Correlation can arise for
any reasons; for example, due to a common cause when an unobserved
etwork affects two networks that are observed ( Pearl, 2000; Spirtes
t al., 1993 ). Arguably, dynamics of interaction among brain networks is
eyond simple correlations and correlation may only partially describe
t. Whereas, effective connectivity is a more general way to represent dy-
amic and directed relationships among brain’s intrinsic networks. As
ntroduced by Friston (2011) effective connectivity falls into a model-
ased class of methods while multiple other methods, including those in
he model-free class have been since developed ( Bielza and Larranaga,
014; Chiang et al., 2017; Chickering, 2002a; 2002b; Deshpande et al.,
011; Goebel et al., 2003; Gorrostieta et al., 2013; Mitra et al., 2014;
chreiber, 2000; Seth et al., 2015; Spirtes and Glymour, 1991; Ursino
t al., 2020; Vicente et al., 2011 ). 
2 
Like these approaches, to estimate brain networks’ connectivity that
s 1) directed, 2) interpretable, 3) flexible, and 4) dynamic, we have
eveloped an approach called the Directed Instantaneous Connectivity
stimator (DICE): a predictive model to estimate dynamic directed con-
ectivity between brain networks, represented as a dynamically varying
irected graph by predicting the downstream binary label. Our model
ay be placed into the category of model-free connectivity methods as it
oes not model the data generation process. We defer to using “directed
network) connectivity ” (D(N)C) for the graphs that DICE estimates. 

Unlike existing supervised DL models that typically produce difficult-
o-interpret representations, we designed our model primarily with in-
erpretability in mind. Our model reveals what it learned about the
ynamics of brain network connectivity without using post hoc inter-
retability methods. Effectively, we have built a “glass-box ” layer within
 traditionally “black-box ” DL model. In contrast to commonly used hid-
en layers, the “glass-box ” layer propagates a weighted adjacency ma-
rix of a directed graph, ensuring that it is interpretable in the context of
he classification task. Hence, by estimating DC based on the task and
sing only the estimated connectivity structure for classification, our
odel learns to capture task-relevant networks and their connectivity,

eading to a flexible estimation of an interpretable DC. By estimating
C instantaneously (window-size = 1), DICE removes the need for the
indow-size parameter used in many dynamic connectivity studies. 

To thoroughly validate DICE’s performance, we conduct a series of
xperiments on four neuroimaging datasets that span three disorders
schizophrenia, autism, and dementia) and cover a wide age range. We
rain the model on classification tasks for each of these brain disorders,
ge prediction, and gender classification, and analyze the resulting DC
f the “glass-box ” layer. Surprisingly, our deliberate focus on stable in-
erpretable results has an enhancing side effect on DICE’s predictive per-
ormance. As we show, the model’s predictions are better or on par with
tate-of-the-art methods that were developed with a focus on classifica-
ion performance rather than interpretability. We show that when learn-
ng to classify subjects based on a specific criterion, DICE estimates in-
erpretable DCs specific to that criterion. For gender and mental disorder
lassification, subgraphs emphasized by the learned DCs are discrimina-
ive of gender and mental disorders, respectively. We also demonstrate
hat DICE learns interpretable DCs distinct to dementia, gender, and
ge prediction for the same subjects by enhancing connectivity for net-
orks that pertain to the training signal. Our flexible estimation of DC

tructures advances the results of Salehi et al. (2020) , which show that
unctional parcel boundaries change for an individual based on the cog-
itive state. We show an increased utility of the inferred directionality
or increasing the precision of explainable group differences. As a re-
ult, DICE can resolve more states in fMRI dynamics than is resolvable
n typical dynamic functional network connectivity analyses. Addition-
lly, DICE incorporates a temporal attention module that highlights cru-
ial time steps relevant to the task, further improving the interpretation
f predictions for the dynamics. The learned DC structures and tempo-
al attention weights are stable and consistent across randomly-seeded
rials. 

. Materials and methods 

.1. Materials 

We use resting state functional magnetic resonance imaging (rs-
MRI) data as input to our model. fMRI measures blood oxygena-
ion level-dependent (BOLD) signal, which captures the functional
ctivity of the brain over time. We test our model by classify-
ng three different brain disorders, predict gender and age of sub-
ects. For each brain disorder we perform binary classification of
ealthy controls (HC) and patients. Four datasets used in this study
re collected from FBIRN (Function Biomedical Informatics Research
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Table 1 

Details of the datasets used. We tried different number of test folds in our experiments but that did not have a significant 
effect on results. Time-points is the number of time-points for each subject in the dataset. Refer to Section Appendix A 

for more details. In the paper we report the results with test folds that match comparing studies. 

Name Category Preprocessing Parcellation Subjects 0 Class 1 Class Test Folds Time-points 

FBIRN Schizophrenia SPM12 ICA 311 151 160 4,6, 18 157 
OASIS Dementia SPM12 ICA 912 651 261 4, 10 157 
ABIDE Autism SPM12 ICA 569 (TR = 2) 255 314 5, 10 140 
ABIDE Autism SPM12 ICA 869 398 471 5, 10 140 
HCP Gender SPM12 ICA 833 390 443 5, 15 980 
FBIRN Schizophrenia SPM12 Shaefer 200 311 151 160 18 157 
HCP Gender Glasser Shaeffer 200 942 411 531 10 1200 
ABIDE Autism C-PAC Shaeffer 200 871 403 468 10 83–316 
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etwork 1 ) Keator et al. (2016) project, from release 1.0 of ABIDE
Autism Brain Imaging Data Exchange 2 ) Di Martino et al. (2014) and
rom release 3.0 of OASIS (Open Access Series of Imaging Studies 3 )
ubin et al. (1998) . Healthy controls from the HCP (Human Connec-

ome Project) ( Van Essen et al., 2013 ) are used for gender prediction.
efer to Table 1 for details of the datasets. 

.1.1. Preprocessing 

We use two typical brain parcellation techniques; independent com-
onent analysis (ICA) and regions of interest (ROIs) based on a pre-
efined atlas. The preprocessing pipeline used depends on the parcella-
ion technique and the pipeline used in state-of-the-art studies for the
ataset. All the preprocessing was done before training the model. 

ICA parcellation: For all experiments conducted using ICA as brain
arcellation technique the fMRI data was preprocessed using statistical
arametric mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/ ) un-
er the MATLAB 2021 environment. A rigid body motion correction was
erformed to correct subject head motion, followed by the slice-timing
orrection to account for timing difference in slice acquisition. The fMRI
ata were subsequently warped into the standard Montreal Neurologi-
al Institute (MNI) space using an echo planar imaging (EPI) template
nd were slightly resampled to 3 × 3 × 3 mm 

3 isotropic voxels. The re-
ampled fMRI images were then smoothed using a Gaussian kernel with
 full width at half maximum (FWHM) = 6 mm. 

We selected subjects for further analysis ( Fu et al., 2021 ) if the sub-
ects have head motion ≤ 3 ◦ and ≤ 3 mm, and with functional data pro-
iding near full brain successful normalization ( Fu et al., 2019 ). 100
CA components are estimated using a novel fully automated Neuro-
ark pipeline “neuromark_fmri_1.0 ”4 described in Fu et al. (2019) . This
ethod is capable of capturing robust imaging features that are com-
arable across subjects, datasets, and studies, which is beneficial for
hose studies need replication. The Neuromark framework leverages an
daptive-ICA technique that automates the estimation of comparable
rain markers across subjects, datasets, and studies. A set of component
emplates were used as references to guide the estimation of single-scan
omponents for the data. These component templates were created via
 unified ICA pipeline. They were constructed using an independent
esting-state fMRI data with large samples of healthy subjects from the
enomics superstruct project (GSP). The GSP data include 1005 sub-
ects’ scans that passed the data QC. High model order (order = 100)
roup ICA was performed on the GSP data, and then the independent
omponents (ICs) from the GSP data were used as the references to ex-
ract components for each dataset used for experiment in this study. The
euromark framework extracts the components for each subject respec-

ively, which means that the estimation of features of each subject is
ot influenced by the others. However, the choice of components (and
1 We use FBIRN phase III. 
2 http://fcon_1000.projects.nitrc.org/indi/abide/ 
3 https://www.oasis-brains.org/ 
4 https://trendscenter.org/data/ 
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umber of components) can influence accuracy, but our study is not fo-
using on determining the best number of ICs rather use the available
omponents and let the model decide the task-dependant components. 

Region parcellation: State-of-the-art methods use different prepro-
essing pipelines for different datasets. For comparison with these meth-
ds on HCP, ABIDE, and FBIRN datasets, we select the same preprocess-
ng pipelines as in the relevant comparing method. We use the HCP
 Van Essen et al., 2013 ) data which was first minimally pre-processed
ollowing the pipeline described in Glasser et al. (2013) . The prepro-
essing includes gradient distortion correction, motion correction, and
eld map preprocessing, followed by registration to T1 weighted im-
ge. The registered EPI image was then normalized to the standard
NI152 space. To reduce noise from the data, FIX-ICA based denois-

ng was applied ( Griffanti et al., 2014; Salimi-Khorshidi et al., 2014 ).
o minimize the effects of head motion subject scans with framewise
isplacement (FD) over 0.3mm at any time of the scan were discarded.
he FD was computed with fsl motion outliers function of the FSL
 Jenkinson et al., 2012 ). There were 152 discarded scans from filter-
ng out with the FD, and 942 scans were left. For all experiments, the
cans from the first run of HCP subjects released under S1200 were
sed. ABIDE ( Di Martino et al., 2014 ) was pre-processed using C-PAC
 Aertsen and Preissl, 1991 ). The preprocessing includes; slice time cor-
ection, motion correction, skull striping, global mean intensity normal-
zation, nuisance signal regression, band pass filtering, and finally func-
ional images were registered to anatomical space (MNI12). After pre-
rocessing using C-PAC, 871 out of 1112 subjects were chosen based
n the visual quality, inspected by three human experts which looked
or brain coverage, high movement peaks and other artifacts resulted by
canner ( Abraham et al., 2017; Cao et al., 2021; Parisot et al., 2018 ). To
re-process FBIRN data, SPM12 pipeline was used as explained in previ-
us section with few extra steps. After the smoothing using a Gaussian
ernel, the functional images were temporally filtered by a finite im-
ulse response (FIR) bandpass filter (0.01 Hz-0.15 Hz). Then for each
oxel, six rigid body head motion parameters, white matter (WM) sig-
als, and cerebrospinal fluid (CSF) signals were regressed out using lin-
ar regression. 

We used two atlases for brain parcellation; Schaefer et al. (2017) ,
nd Harvard Oxford (HO) ( Desikan et al., 2006 ) with 200, and 111 re-
ions respectively. For each region, average value is computed for all
he voxels falling inside a region, thus resulting into a single time-series
or each region. After dividing data into regions, each time-series was
tandardized by their zscore having zero mean and unit variance. 

.2. Method 

Our DICE model recieves the time-courses of the ICA components
r ROIs represented as a matrix of size 𝑁 ∗ 𝑇 (Number of compo-
ents/ROIs ∗ Number of time-points) and learns a set of 𝑇 directed
raphs representing the dynamic DC or DNC between spatial compo-
ents (e.g., ICA-based spatial components, regions from an atlas), which
e designate as nodes of a graph by predicting the binary labels. Let 𝐺

epresent the set of graphs where 𝐺 = { 𝑔 , 𝑔 , … , 𝑔 } where 𝑇 is the to-
1 2 𝑇 

http://www.fil.ion.ucl.ac.uk/spm/
http://fcon_1000.projects.nitrc.org/indi/abide/
https://www.oasis-brains.org/
https://trendscenter.org/data/
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Fig. 1. DICE architecture using biLSTM, self- 
attention and temporal attention. We use self- 
attention between the embeddings of all com- 
ponents/nodes at each time-point to estimate 
the DC 𝐖 𝑖 . Temporal attention is used to cre- 
ate a weighted sum of the 𝑇 DC. Architecture 
details of temporal attention is shown in Fig. 2 . 
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al time-points and 𝑔 𝑡 = ( 𝑉 𝑡 , 𝐸 𝑡 ) , where, 𝑉 𝑡 and 𝐸 𝑡 represent the nodes
nd edges present at time-point 𝑡 . To create the graph 𝑔 𝑡 we first use
 bidirectional long short-term memory (biLSTM) ( Schuster and Pali-
al, 1997 ) module to create the embedding 𝐡 𝑖 𝑡 of node 𝑖 at time 𝑡 . We

hen use a self-attention module ( Vaswani et al., 2017 ) which takes all
uch embeddings at each time 𝑡 and create a weight matrix among nodes
hus providing the DC (graph) between nodes at each time-point. To
reate a final graph 𝐺 

𝑓 for downstream classification, we use a tem-
oral attention model that assign a weight to each 𝑔 and compute the
𝑡 

4 
eighted sum of the set 𝐺. We explain the working and purpose of each
odule in detail in the following sections. Figure 1 shows the complete

rchitecture. 

.2.1. biLSTM 

The time-point value 𝑥 𝑖 𝑡 for node 𝑖 at time 𝑡 can be effected by many
ifferent factors and relations. Capturing these relations can increase
odel interpretability and improve downstream classification perfor-
ance. In a time-series (fMRI data), one of these factors is the val-
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es/data at previous time-points 𝑥 𝑖 1…𝑡 −1 . In fMRI data, this relationship
s unknown and is hard to capture and hence cannot be computed using
 fixed method/formula (hand-crafted features). The difficulty is further
ncreased by a) low temporal resolution of fMRI data and b) the fact that
t is unknown how farther in time the effects of a time-point remains in
 time-series. These effects are different for each subject and can even
ary among nodes of the same subject. LSTMs have proved to be ex-
remely effective for time-series/sequence data where the model takes
n input from a sequence at time-point 𝑡 and create representation for
urrent and also predict representation for future time-courses based on
he representation of previous time-points. LSTMs learn the temporal
elationships between data through the cell’s memory and forget gate.
hese gates are optimized on the data and downstream task (ground-
ruth signal) and the relationships between data are learned instead of
omputed. The working of the LSTMs can be explained by the following
et of equations. 𝜎 represents sigmoid activation, and ⊙ is the Hadamard
roduct ( Million, 2007 ). 

 𝑡 = 𝜎( 𝐖 𝑖𝑖 𝐱 𝑡 + 𝑏 𝑖𝑖 + 𝐖 ℎ𝑖 𝐡 𝑡 −1 + 𝑏 ℎ𝑖 ) 
 𝑡 = 𝜎( 𝐖 𝑖𝑓 𝐱 𝑡 + 𝑏 𝑖𝑓 + 𝐖 ℎ𝑓 𝐡 𝑡 −1 + 𝑏 ℎ𝑓 ) 
 𝑡 = tanh ( 𝐖 𝑖𝑔 𝐱 𝑡 + 𝑏 𝑖𝑔 + 𝐖 ℎ𝑔 𝐡 𝑡 −1 + 𝑏 ℎ𝑔 ) 
 𝑡 = 𝜎( 𝐖 𝑖𝑜 𝐱 𝑡 + 𝑏 𝑖𝑜 + 𝐖 ℎ𝑜 𝐡 𝑡 −1 + 𝑏 ℎ𝑜 ) 
 𝑡 = 𝐟 𝑡 ⊙ 𝐜 𝐭− 𝟏 + 𝐢 𝑡 ⊙ 𝐠 𝑡 
 𝑡 = 𝐨 𝑡 ⊙ tanh ( 𝐜 𝑡 ) 

(1) 

In the above equations, 𝐢 𝑡 , 𝐟 𝑡 , and 𝐨 𝑡 represent the input, forget and
utput gates at time 𝑡 respectively. 𝐜 𝑡 represents the cell state (mem-
ry), 𝐠 𝑡 represents candidate for the cell state, and 𝐡 𝑡 represents the
epresentation/embedding for the input at 𝑡 . 𝐖 𝑖𝑥 and 𝐖 ℎ𝑥 represent
he weights for the input and hidden vectors for the respective gate
 ∈ { 𝑖 -input , 𝑓 -forget , 𝑜 -output } . Similarly 𝑏 𝑖𝑥 , 𝑏 ℎ𝑥 are the biases for the
espective gate 𝑥 ∈ { 𝑖, 𝑓, 𝑜 } . We use a biLSTM to create representation
 𝑡 for each node 𝑖 . Thus 𝐡 𝑓 𝑡 = 𝐿𝑆𝑇 𝑀( 𝐱 𝑡 , 𝐡 𝑡 −1 ) , 𝐡 𝑏 𝑡 = 𝐿𝑆𝑇 𝑀( 𝐱 𝑡 , 𝐡 𝑡 +1 ) and

 𝑡 = concat enat e ( 𝐡 𝑓 𝑡 , 𝐡 
𝑏 
𝑡 ) . Here 𝐡 𝑓 𝑡 and 𝐡 𝑏 𝑡 are representation for forward

nd backward pass. We use LSTM for each node (component/region)
ndividually, sharing weights of LSTM among the nodes. As shown in
q. (1) , LSTM’s usually take a vector 𝐱 𝑡 as input at each step, how-
ver, we give 𝑥 𝑖 𝑡 (scalar value) as input to the LSTM along with hid-
en vector and receive 𝐡 𝑖 𝑡 for the node 𝑖 at time-point 𝑡 , which solves
he window size problem occurring in dynamic-FNC studies. To make
t easier to understand, one can assume that in our model the window
ize is 1. This allows us to later instantaneously compute connectivity
atrix (links/edges) between the nodes at each time-point. The biLSTM

eceives temporal values of each component/region separately but share
he weight matrices across regions. This allows the biLSTM to learn the
emporal connections by looking at multiple nodes but does not learn
patial dependencies among nodes. For this exact reason we use self-
ttention across nodes. 

.2.2. Self-Attention 

A node in a graph can be linked with other nodes represented as
he edge connectivity between them. The connectivity between nodes
nfluence the value of a node ( 𝑥 𝑖 𝑡 ) at a certain time-point. Thus it is im-
ortant to measure the connectivity between nodes for the construction
nd interpretation of the graph. In our fMRI data where each 𝑥 𝑖 is a brain
egion/component, capturing the DC or DNC between nodes shows how
rain networks are linked with each other and the direction of flow of
nformation between brain networks. The estimated matrices can then
e used to explain brain working and brain disorders. Connectivity be-
ween brain regions is independent of the structural connectivity and
hus is unknown. To capture the directed connectivity between brain
egions, we use a self-attention module. 

Self-attention module captures the weights between 𝑛 inputs of a
equence. Since in a dynamic system (brain network), the connectivity
etween nodes can change at any instance, therefore, at each time-point
 we pass a sequence of 𝑛 vectors 𝐡 1 𝑡 …𝐡 𝑛 𝑡 , 𝑛 = total nodes, as input to
he self-attention module and create the weight matrix 𝐖 , where each
𝑡 

5 
 𝑡 ∈ ℝ 

𝑛 ∗ 𝑛 is the connectivity weight matrix of input nodes at time-point
 . 

The self-attention module creates three embeddings, namely, key ( 𝐤 ),
alue ( 𝐯 ), and query ( 𝐪 ) and creates new embeddings for each input
sing these embeddings. The following set of equations can sum up the
hole process. For simplicity, we omit the 𝑡 from these equations. ⊺

epresents transpose and ⊕ represents concatenation. 

 

𝑖 = 𝐡 𝑖 ⊺𝐖 

( 𝑘 ) , 𝐯 𝑖 = 𝐡 𝑖 ⊺𝐖 

( 𝑣 ) , 𝐪 𝑖 = 𝐡 𝑖 ⊺𝐖 

( 𝑞) 

 = ⊕𝑛 
𝑖 =1 𝐤 

𝑖 ⊺, 𝐰 

𝑖 = sof tmax ( 𝐪 𝑖 𝐊 ) 
 = ⊕𝑛 

𝑖 =1 𝐰 

𝑖 

(2) 

Here 𝐖 ∈ ℝ 

𝑛 ∗ 𝑛 is the connectivity matrix between 𝑛 nodes in the
raph. As brain disorder are associated with disruptions in the connec-
ivity of brain’s intrinsic network, we only use our learned directed con-
ectivity matrices 𝐖 for downstream classification and not the features,
hus forcing the model to estimate the differences in connectivity be-
ween the two classification groups (e.g., HC and patients). As DICE is
uned to estimate the DC or DNC for the groups of subjects and output
he it, DICE captures and shows the basis of downstream classification.
he DC or DNC estimated by the model can be easily represented as a
raph which are extremely easy to interpret. The self-attention glass-box
ayer shows task-dependant nodes (brain regions) and their connectiv-
ty. 

The features that represent time-courses are used to learn/estimate
he DC or DNC structure. As the true connectivity/graph structure is
ever available in many applications to directly compare with, we pro-
ose that a connectivity matrix leading to state-of-the-art classifica-
ion performance makes it more reliable than using the representa-
ions/embeddings for classification. 

.2.3. Temporal attention 

As we use only the connectivity matrices learned by the model for
ownstream classification. For this purpose, we need to create a single
eight matrix 𝑊 

𝑓 based on the 𝑊 1− 𝑇 matrices. For the downstream
lassification task, not all the time-points are equally important, hence
t is crucial to incorporate a temporal attention module which assigns
eight to each 𝐖 𝑡 and calculate a weighted average of all the weight
atrices. We introduce a novel temporal attention module which we

all global temporal attention (GTA). 
GTA: To give the attention module a global view of the graph, we

resent GTA. The global view allows the model to learn how each DC
ontributes to the global graph or structure of the data in the down-
tream task. We create an average of all the 𝑇 DC and call it 𝐖 

𝑔𝑙𝑜𝑏𝑎𝑙 

epresenting the global view. We then compare the similarity of each
ocal 𝐖 𝑡 with the global view and use them to create the temporal at-
ention vector 𝜶. Figure 2 shows the architecture details. 

 

𝑔𝑙𝑜𝑏𝑎𝑙 = 

1 
𝑇 

∑𝑇 
𝑡 =1 𝐖 𝑡 

 𝑡 = 𝐖 𝑡 ⊙𝐖 

𝑔𝑙𝑜𝑏𝑎𝑙 

= ( ⊕𝑇 
𝑡 =1 (((( f lat ( ̃𝐖 𝑡 )) 𝐖 

𝑀𝐿𝑃 𝑙1 ) 𝐖 

𝑀𝐿𝑃 𝑙2 ) 𝐖 

𝑀𝐿𝑃 𝑙3 ) 
(3) 

Here ⊙ is the Hadamard product ( Million, 2007 ) between matrices.
 

𝑓 is computed as: 

 

𝑓 = 

𝑇 ∑
𝑡 =1 

𝐖 𝑡 𝛼𝑡 (4)

.3. Training 

We used GTX 2080 with PyTorch as ML framework for our experi-
ents. The hidden dimensions for the biLSTM was set to 100, whereas,

elf-attention including key, query, and value modules, were all set to
8. The dimensions of multi-layer perceptron (MLP) layers for calculat-
ng temporal attention vector were 𝜂1 ∗ 𝑙 𝑒𝑛 ( 𝑓𝑙 𝑎𝑡 ( 𝐖 𝑡 )) , 𝜂2 ∗ 𝑙 𝑒𝑛 ( 𝑓𝑙 𝑎𝑡 ( 𝐖 𝑡 )) ,
nd 1 with 𝜂1 = 𝜂2 = 0 . 05 . We noticed in our experiments that multiple
eads of self-attention increases stability of the estimated DC. We used
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Fig. 2. GTA architecture for temporal attention. 𝐖 1− 𝑇 matrices are summed to 
create 𝐖 

𝑔𝑙𝑜𝑏𝑎𝑙 . Using 𝐖 

𝑔𝑙𝑜𝑏𝑎𝑙 and 𝐖 𝑖 attention score 𝛼𝑖 is created for each time- 
point. Refer to equations in 3 and 4 for working details. Here f denotes the 
average function. 

b  

i  

t  

m  

L  

p

𝑙  

𝜽  

 

m  

d  

W  

w  

m  

p  

p  

p  

f  

o  

w  

t  

t  

i  

t  

e  

R  

w  

o  

b  

s  

m  

e  

p  

l  

t

2

 

l  

s  

o  

a  

t  

h  

f  

a  

v  

o  

d  

s  

o  

r  

t  

u  

s  

s  

a  

c  

s  

p  

a  

m  

p  

l  

h  

r

3

 

p  

g  

W  

f  

(  

t  

t  

a  

f  

s  

G  

2  

p  

d  

p  

v  

F  

l  

d
 

b  

f  

t

5 https://github.com/alvarouc/polyssifier 
atch normalization after the first MLP layer. ReLU activation was used
n our model between the MLP layers. A final two-layer MLP was used
o get logits for binary classification problem with 𝐖 

𝑓 as input with di-
ensions 64 and 2. We used cross-entropy loss with Adam optimizer.

et 𝜃 represent the parameters of the entire architecture, �̂� being the
redictions and 𝑦 the true labels, the loss is calculated as: 

𝑜𝑠𝑠 = CrossEntropy ( ̂𝐲 , 𝐲) + 𝜆‖𝜽‖1 (5)

∗ = arg min 𝜽( 𝑙𝑜𝑠𝑠 ) (6)

We also experimented with additional loss terms to encourage the
odel to estimate connectivity matrices where the values of the main
iagonal are closer to 1. Please refer to Section Appendix B for details.
e used L1-regularization to get a sparser solution. 𝜆 (regularization
eight) was set as 1 𝑒 −6 and learning rate was 2 𝑒 −4 . Based on the experi-
ent, we reduced the learning rate either when validation loss reached
lateau by a factor of 0.5 or exponentially with 𝛾 = 0 . 99 . Early stop-
ing was used to stop training the model based on validation loss and
atience of 25. For each dataset (ICA components or ROIs), to have a
air result, we perform n-fold testing where the value of n depended
n the dataset and methods we compared against. For each test fold
e performed experiments with 10 randomly-seeded trials. We report

he mean AUC-ROC (Area Under Curve - Receiver Operating Charac-
eristic) across the n test folds and the 10 randomly-seeded trials as
t is a more reliable metric than simple accuracy for binary classifica-
ion tasks. For example, for FBIRN data we had 18 test folds and for
ach fold we performed 10 trials, which gives us a list of 180 AUC-
OC values and we report the average of these values. In some cases
e also report other metrics as well, such as accuracy. Due to the size
f the data, we made some hyper-parameter changes for HCP region-
ased (ROIs) experiments. The hidden dimension size for bilstm and
elf-attention module was set to 64 and 32. 𝜂1 was set to 0.005. Further-
ore, because of memory constraints encountered during HCP region
6 
xperiments, during both training and testing we divide the total time-
oints (1200) into a set of three, each having 400 time-points. We create
ogits for all and compute the mean to get final logits. Batch size was set
o 32. 

.3.1. Hyper-parameters selection and fine-tuning 

All the parameters (hidden dimensions, number of layers, 𝜂1 , 𝜂2 , 𝜆,
earning rate, 𝛾, patience, batch size) mentioned in Section 2.3 were
et as hyper-parameters. We fine-tuned these hyper-parameters based
n the average performance of the model on validation dataset across
ll the folds. We did not perform hyper-parameters tuning based on
he test folds and we report only test-set results. We also want to note
ere that we permuted the order of subjects for each dataset and per-
ormed the experiments using the permuted order. This was done to
void imbalance of subjects in the folds. On the same lines, when di-
iding the data into n-folds (test folds) we tried to balance the number
f subjects of both classes in each fold. For example, in case of FBIRN
ata with 311 subjects and 151 and 160 subjects in class 0 and 1 re-
pectively. When performing 18 fold testing, each test fold consisted
f ⌊ 151 

18 ⌉ subjects from class 0 and ⌊ 160 
18 ⌉ subjects from class 1 and the

est of the data was used for training and validation, where we kept
he validation set size same as the test set size. The validation set was
sed for hyper-parameters tuning, early stopping during training and
electing the model to apply on the test data. We made sure that no
ubject (or sessions of a subject) repeated across training, validation
nd test sets. The exact size of training, validation and test set can be
alculated using the criteria mentioned above and the total number of
ubjects and number of folds mentioned in Table 1 . In some of the ex-
eriments keeping the same number of subjects in each fold created
 small data leakage at the end. For the results reported, the maxi-
um leakage was for FBIRN dataset with 18 test folds. For this pur-
ose, we performed another experiment on FBIRN dataset where the
ast fold had all the left out subjects to prevent any data leakage. This
ad no effect on the performance of the model. Refer to Table A.11 for
esults. 

. Experiments 

To test if DICE accomplishes all the goals, we perform detailed ex-
eriments by classifying three brain disorders, classify male and female
roups for HCP and OASIS subjects, and predict age for OASIS subjects.
e perform experiments for all datasets using ICA time-courses and per-

orm experiments on FBIRN, ABIDE and HCP data using regions-based
ROIs) data as well. In this paper we refer to matrices capturing func-
ional connectivity between networks at a whole-brain level as func-
ional network connectivity (FNC) ( Allen et al., 2011b; Jafri et al., 2008 )
nd when operating on ROIs – as FC. We report the average results
or all the trials. Depending on the experiment, we compare our clas-
ification results with state-of-the-art DL methods ( Arslan et al., 2018;
adgil et al., 2021; Kim and Ye, 2020; Mahmood et al., 2021; 2019;
020; Weis et al., 2019; Zhang et al., 2018a ) and ML methods (Sup-
ort Vector Machine (SVM), Logistic Regression (LR)). To avoid any
iscrepancy we report the results of the DL methods directly from the
ublished studies, even though some studies use test data instead of
alidation data for selecting the best performing model/parameters.
or ML methods we used the python package Polyssifier 5 which se-
ects the best model/parameters based on the performance on validation
ata. 

To show the efficacy of our model, we divide our results into three
road categories. In the following sections we show a) classification per-
ormance of our model, b) learned DC and DNC and c) the effects of
emporal attention module. 

https://github.com/alvarouc/polyssifier
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Fig. 3. AUC comparision of DICE model with four different methods (MILC Mahmood et al. (2020) , STDIM Mahmood et al. (2019) , logistic regression (LR), support 
vector machine (SVM)), over four different datasets using ICA time-courses (Ref to Section 2.1.1 ). Our method significantly outperforms SOTA methods. We performed 
Autism experiments with 869 subjects (all TRs) as well. As we do not have a pre-training step we compare with not-pre-trained (NPT) version of MILC and STDIM. 
Input to ML methods were the same ICA time-courses, not the FNC matrices. We did not find any notable studies for gender classification of HCP subjects using ICA 

components as notable methods used ROIs based data. We compare the results using ROIs in Table 2 . 

Table 2 

Classification performance comparison of DICE with other DL methods on region-based (ROIs) data of HCP and FBIRN datasets (Ref to Section 2.1.1 ). Our DICE 
model outperforms all other methods in almost every metric. The best two scores are shown as bold and italic respectively. Note: As we use all the regions in the 
atlas we report the mean accuracy for SVM-RBF ( Weis et al., 2019 ). The results for GCN ( Arslan et al., 2018 ) on HCP data are reported by GIN ( Kim and Ye, 2020 ). 
GIN ( Kim and Ye, 2020 ) and ST-GCN ( Gadgil et al., 2021 ) use test data as validation data for choosing the best performing model. We would also like to point here 
a newer version of GIN ( Kim and Ye, 2020 ), named STAGIN ( Kim et al., 2021 ) reports AUC and ACC score of 92.96 and 88.20 respectively using 1093 subjects, 
and 5-fold testing. STAGIN ( Kim et al., 2021 ) reports much lower ACC for GIN and ST-GCN (81.34 and 76.95 respectively) when not using test data as validation 
data and keeping other parameters (data, preprocessing, parcellation etc.) same. NA: Not Available. 

HCP - Gender Classification FBIRN 

DICE GIN SVM-RBF GCN ST-GCN PLS DICE BrainGNN 

AUC 0.935 NA NA NA NA 0.881 0.825 0.788 

ACC (%) 85.8 84.6 68.7 83.98 83.7 79.9 NA NA 
Precision (%) 85.7 86.19 NA 84.59 NA NA NA NA 
Recall (%) 90.2 86.81 NA 87.78 NA NA NA NA 
Parcellation Shaefer 200 Shaefer 400 Shaefer 400 + Fan 

39 
Shaefer 400 Multi-modal 22 Dosenbach 160 Shaefer 200 AAL 116 

Test Folds 10 10 10 10 5 10 18 18 
Subjects 942 942 434 942 1091 820 311 311 
Study Our Kim and Ye (2020) Weis et al. (2019) Arslan et al. (2018) Gadgil et al. (2021) Zhang et al. (2018a) Our Mahmood et al. (2021) 
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.1. Classification 

Figure 3 shows the classification performance of our model using
CA data, Table 2 shows the performance using region-based (ROIs) data
f FBIRN and HCP, and Table 3 shows results on ABIDE region-based
ROIs) data. 

Our model beats every state-of-the-art method used for compari-
on in this study in almost every metric for both ICA and region-based
ROIs) fMRI data across all datasets when using similar input data
fMRI). As our model does not use phenotypic information about sub-
ects, it lacks behind ( Cao et al., 2021; Parisot et al., 2018 ) on ABIDE.
7 
arisot et al. (2018) reports a decrease of ∼ 2 . 5 AUC by using a different
henotypic information which clearly shows the dependence on pheno-
ypic data. Whereas, Ktena et al. (2018) reports much lower AUC score
y using only fMRI data. ML methods fail completely even on ICA data,
e attribute this failure to two reasons. 1) The number of dimensions

 𝑚 ) being much higher than the number of subjects ( 𝑛 ), thus creating
he curse of dimensionality ( 𝑚 >> 𝑛 ) and 2) The ML methods do not
ompute a graph structure for estimating the connectivity between the
etworks/components and instead mostly work with independent net-
orks/components. According to our knowledge, no other model gives

uch high classification score across four neuroimaging datasets. The
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Table 3 

Comparison of AUC score on ABIDE region-based (ROIs) dataset. Existing methods use Harvard 
Oxford (HO) parcellation with 111 brain regions, therefore we tested DICE using two atlases. 
Unlike Parisot et al. (2018) , Cao et al. (2021) we use only fMRI data. We also show that DICE 
model doesn’t depend on the region atlas and gives similar performance using different atlases 
for region parcellation of the brain. 

Method Parcellation Input n_regions AUC 

DICE Shaefer fMRI data 200 0.70 

DICE HO fMRI data 111 0.69 
GCN ( Parisot et al., 2018 ) HO fMRI + phenotypic data 111 0.75 

DeepGCN ( Cao et al., 2021 ) HO fMRI + phenotypic data 111 0.75 

Metric Learning ( Ktena et al., 2018 ) HO fMRI data 111 0.58 
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Table 4 

We compare the D/FNCs on the basis of AUC score on 
FBIRN dataset. We train and test a logistic regression (LR) 
model using FNCs computed by PCC, and using DNCs es- 
timated by DICE. Performance using estimated DNCs is 
in reaching distance of ML methods using hand-crafted 
features (FCs). Appendix A show some experiment details 
that lead to an even improved classification results. 

Method Input Mean Max Min Std Dev 

LR PCC FNC 0.883 1 0.72 0.085 
LR Our DNC 0.86 1 0.62 0.096 
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M  
igh classification score of the model computed using only the learned
C structure increases the confidence in the correctness of the learned
C structures. 

.2. Directed connectivity 

The learned interpretable, task-dependent (flexible) directed connec-
ivity structures by our model is the most important contribution of our
ork. As this is a novel work, we show in detail, different aspects of the

earned connectivity structures. We a) compare our learned DNC with
NC computed via PCC, b) compare the differences in DC and DNC be-
ween multiple classification groups, c) show how direction matters in
onnectivity, something which is not captured by FC and FNC, d) dive
nto the fact mentioned in introduction that unlike computed FNC (us-
ng PCC) our learned DNC is task dependent and changes based on the
ownstream task (ground-truth signal) and e) show the dynamic con-
ectivity states for FBIRN data for HC and schizophrenia (SZ) subjects.
ll the aspects (a-e) discussed in detail in following sections show the
orrectness and interpretability of the learned DC and DNC. The inter-
retability of the connectivity matrices estimated by our model give
nsight into how brain networks are linked with each other and with
he downstream classification task. This is very crucial to understand
rain disorders and relevant brain networks. Unlike typical FC and FNC
hich ranges from -1 to 1, our learned matrices are based on attention
nd hence ranges from 0 to 1. More information on this in Appendix B .

.2.1. DNC vs FNC 

As the true connectivity between brain networks is not known, we
ompare our learned DNC with FNC. Figure 4 shows the DNC learned
y our model and the FNC computed using PCC using ICA components
or FBIRN dataset. The DNC is 𝐖 

𝑓 explained in Section 2.2.3 . Both
NC and FNC is the mean matrix for highest performing fold of FBIRN
ataset with 16 subjects. The 100 ICA components are divided into in-
ormative (53) and noise (47). We show the connectvity between 53
on-noise components. These components are further divided into 7 do-
ains/networks following ( Allen et al., 2011a ). Both matrices clearly

how high intra-domain connectivity. The learned DNC shows similar
attern of FNC which increases the confidence in the DNC learned by our
odel but there are very important differences between the two. Inter-

etwork connectivity: We see that our estimated DNC finds much more
nter-network connectivities than the FNC which is mostly intra-network
nd has very low scores between networks. Directionality: Regarding
he direct influence, DNC estimated by our model is directed and shows
omponents in visual affecting components through out the domains,
uch information is not present in the FNC which is un-directed (sym-
etric across main diagonal) and does not show the direction of con-
ectivity. Refer to Section 3.2.2 for more detail on this. 

To compare the connectivity matrices in terms of classification re-
ults, we use an LR model and perform classification by first training
nd testing the model using PCC-based FNC and then by our estimated
NC as input. Refer to Table 4 for comparison. 
8 
.2.2. Directed connectome 

Capturing directed connectivity is one of the methods to understand
he direction and flow of information in the brain. Learning the direction
f connectivity is one of the main advantages of our model as it might ex-
lain the direct influence of brain networks upon each other. To show
he direction between components, we divide the DNC of FBIRN sub-
ects into two connectomes showing the direction. Figure 5 left shows
he edges from 𝑎 to 𝑏 where 𝑎 > 𝑏 . For example the edge between (8,23)
hows the edge from 23 to 8, whereas, Fig. 5 right shows the oppo-
ite. It is clear from the figure that direction matters and the connec-
ivity between brain regions is beyond simple statistical dependence.
or example, Fig. 5 shows that the components in visual network (VIN)
ffect components in other networks and the edges in the opposite di-
ection are relatively much fewer. We also see direction of connectiv-
ty from cognitive control (CC) to sensorimotor (SM). Existing studies
 Breukelaar et al., 2017; Cole and Schneider, 2007; Tsai et al., 2019 )
how that cognitive control is responsible for activities like attention,
emembering and execution, things which are required when doing a
otor task controlled by sensorimotor. Such directionality is important

o study brain’s working in more detail and is not present in FNC used
y existing methods. The results are further discussed in Section 4.1 

.2.3. Connectivity differences among groups 

As hypothesized that brain disorders are linked with the connec-
ivity of brain’s intrinsic networks, we show how the learned DC and
NC changes for subjects belonging to different groups. Figure 6 a shows

he DNC estimated by our model of HC and SZ subjects for FBIRN
ata whereas Fig. 6 b shows DNC of male and female groups for OASIS
ataset. Both results are computed using ICA pre-processed data. For
CA based DNC, there are similarity between the two matrices as they
ome from the same joint ICA. However, there are visible difference be-
ween the two for multiple networks like visual (VI), cognitive control
CC), default-mode (DM) and cerebellum (CB). The biggest difference
etween HC and SZ groups seems to be in the connectivity strength for
IN. For OASIS results 6 b we see that females show high connectiv-

ty scores in default-mode network (DMN) compare to males and low
ensori-motor network (SMN) connectivity compare to males, this has
een verified by existing studies ( Filippi et al., 2013; Kim et al., 2021;
ak et al., 2016; Ritchie et al., 2018 ). To verify this by numbers, we
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Fig. 4. We compare our estimated DNC with computed FNC using PCC method. 4 a is the connectivity matrix generated by our model for FBIRN dataset. We used 
a test fold of 16 subjects and computed mean FNC for all subjects (10 trials per subject). 4 b is the mean connectivity matrix of the same subjects generated by PCC. 
Both figures show similar intra-network connectivity patterns, which verifies the correctness of the connectivity matrix learned by our model. Our estimated DC is 
directed and captures more inter-network connectivity than FNC. To match the positive weights of our model, we have normalized the FNC from 0 to 1 instead of 
-1 to 1. 

Fig. 5. We show the top 10 % directed edges of FBIRN DNC. The numbers represent the 53 non-artifact components. The figure clearly shows the high intra-domain 
connectivity which matches the existing literature. Direction clearly matters as visual components affect other components but not the opposite way. The direction 
of edges between CC and SM networks is also of significance. 
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se statistical testing to compare the two groups (male, female) and
ompare average connectivity for male and female in DMN and SMN.
able 5 shows the statistical results. 

Figure 7 performs the same experiment for region-based (ROIs) data.
ere the regions for both sides of the brain (left and right) are di-
9 
ided into 7 domains following shaefer ( Schaefer et al., 2017 ). Again,
n Fig. 7 b for HC we see high connectivity score between regions of the
ame network. We also see connectivity between regions of same net-
ork across left and right side of the brain. The diagonals on top and
ottom of the main diagonal shows this. Whereas the DC of SZ sub-
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Fig. 6. We compare the estimated DNC across the binary classification groups using ICA data. Figure 6 a is the estimated DNC on FBIRN data for HC and SZ patients. 
We see high inter and intra-connectivity in SM and VI networks for HC, which is missing in SZ patients. Figure 6 b compares DNC between male and female groups 
using OASIS data. Female group shows hyper-connectivity in DMN and hypo-connectivity in SMN when comparing to male groups. 
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ects is weakly connected compared to HC and is mostly shows intra-
etwork connectivity. The sparsity explains and support the existing lit-
rature explaining SZ as functional dysconnectivity between brain net-
orks ( Culbreth et al., 2021; Lynall et al., 2010; Morgan et al., 2020;
an den Heuvel et al., 2010; Yu et al., 2011; Zhang et al., 2019; Zhu
t al., 2020 ). 

Figure 7 b compares male and female groups based on region-based
ROIs) HCP data. We see similar patterns of hyper-connectivity of DMN
nd hypo-connectivity of SMN in females as compared to males. As the
egion-based (ROIs) parcellation divides the brain into left and right, we
lso see that females have high intra-network connectivity between left
nd right side of the brain as compared to males. 
g  

10 
To verify the visual results, we use statistical testing to compare the
MN and SMN between males and females. The stats confirm the visual

esults with 1) female DMN showing higher connectivity than female
MN and male DMN, and 2) male SMN showing higher connectivity
han male DMN and female SMN. We also see that the networks are
ighly statistically different. Refer to Table 7 . 

.2.4. Task dependent DNC 

Human brain can be divided into multiple parts/regions where each
egion is linked with a set of tasks. For example, the hippocampus
s associated with memory. Thus it is important to know which re-
ion/network(s) are linked with the downstream task (e.g. disorder
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Table 5 

Shows stats between male and female DNCs ( 6 b) estimated using ICA time-courses of OASIS. 
We see that the estimated DNCs for male and female subjects are highly significantly different. 
For females DMN is hyper-connected than SMN whereas for male SMN has higher average con- 
nectivity score than DMN. This shows that the model accurately captures the group differences 
among male and female subjects and uses the connectivity difference in DMN and SMN to clas- 
sify male and female subjects. F - Female, M - Male, All - All networks/complete matrix. Results 
of classification performance is shown in Table 9 . Table 6 shows the p -value significance ranges. 

Network 1 Network 2 Test Type P -value Avg. Connectivity 1 Avg. Connectivity 2 

t -test 1e-250 
F_All M_All manwhitneyu 1e-256 0.353 0.311 

t -test 0.15 
F_DM F_SM manwhitneyu 0.12 0.536 0.510 

t -test 5e-5 
M_DM M_SM manwhitneyu 4e-5 0.417 0.575 

t -test 6e-4 
F_DM M_DM manwhitneyu 4e-4 0.536 0.417 

t -test 3e-4 
F_SM M_SM manwhitneyu 5e-5 0.510 0.575 

Table 6 

Ranges of 𝑝 -value and the corresponding significance level. ns (no significance). 

𝑃 -value 𝑝 > 0 . 10 0 . 05 < 𝑝 < 0 . 10 0 . 01 < 𝑝 < 0 . 05 0 . 005 < 𝑝 < 0 . 01 0 . 0001 < 𝑝 < 0 . 005 𝑝 < 0 . 0001 

Significance ns ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 

Table 7 

Shows stats between male and female DCs ( 7 b) estimated using region-based (ROIs) HCP dataset. We clearly see that females have hyper- 
connectivity in DMN and hypo-connectivity in SMN as compare to males. Female group has higher connectivity scores in DMN compared to 
SMN and male DMN whereas male group has higher connectivity in SMN compared to DMN and female SMN. This shows that our learned 
model accurately captures the differences in DMN and SMN connectivity among males and females and uses that for classification. F - Female, 
M - Male, L - Left, R - Right. Table 6 shows the p -value significance ranges. 

Network 1 Network 2 Test Type P -value Avg. Connectivity 1 Avg. Connectivity 2 

F_All M_All 
t -test 1e-14 

0.455 0.533 
manwhitneyu 1e-25 

F_L_DM_temp F_L_SM 

t -test 2e-3 
0.689 0.632 

manwhitneyu 4e-3 

F_R_DM_temp F_R_SM 

t -test 7e-4 
0.671 0.593 

manwhitneyu 4e-4 

M_L_DM_temp M_L_SM 

t -test 2e-7 
0.567 0.622 

manwhitneyu 1e-3 

M_R_DM_temp M_R_SM 

t -test 9e-4 
0.558 0.611 

manwhitneyu 2e-4 

F_L_DM_temp M_L_DM_temp 
t -test 4e-5 

0.689 0.567 
manwhitneyu 6e-5 

F_R_DM_temp M_R_DM_temp 
t -test 8e-5 

0.671 0.558 
manwhitneyu 3e-5 

F_L_DM_pCunPCC F_L_SM 

t -test 2e-4 
0.718 0.632 

manwhitneyu 1e-3 

F_R_DM_pCunPCC F_R_SM 

t -test 1e-5 
0.758 0.593 

manwhitneyu 5e-5 

M_L_DM_pCunPCC M_L_SM 

t -test 2e-7 
0.548 0.622 

manwhitneyu 3e-4 

M_R_DM_pCunPCC M_R_SM 

t -test 1e-2 
0.547 0.611 

manwhitneyu 1e-2 

F_L_DM_pCunPCC M_L_DM_pCunPCC 
t -test 2e-4 

0.718 0.548 
manwhitneyu 3e-4 

F_R_DM_pCunPCC M_R_DM_pCunPCC 
t -test 3e-4 

0.758 0.547 
manwhitneyu 7e-4 

F_L_SM M_L_SM 

t -test 1e-1 
0.632 0.622 

manwhitneyu 4e-1 

F_R_SM M_R_SM 

t -test 1e-2 
0.593 0.611 

manwhitneyu 2e-3 
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h  
lassification). Finding the linked regions/networks would help us un-
erstand the disorder and allow to study the association of these re-
ions/network(s) with the disorder in more detail. In this section, we
ee how the DNC structure learned by our model changes and identifies
ifferent networks for the same subjects based on the downstream task.
or this purpose, we perform an experiment, where we compare the esti-
11 
ated DNC for OASIS data when predicting dementia, age and gender of
he same subjects. The number of subjects were balanced with both HC
nd patients equalling 50 % of the total subjects but had ∼ 62% female
ubjects. Figure 8 shows that our model produces task dependent DNC
nd the networks/domains showing high connectivity for each task ad-
eres to the existing literature. The Fig. 8 a shows the DNC learned when



U. Mahmood, Z. Fu, S. Ghosh et al. NeuroImage 264 (2022) 119737 

Fig. 7. We compare the estimated DCs of HC with SZ and male with female using region-based (ROIs) FBIRN and HCP data. 7 a show high weakly connected brain 
networks for SZ subjects whereas 7 b show hyper-connectivity of DMN and hypo-connectivity for SMN for females as compared to females. The black and grey color 
denotes the regions in left and right side of the brain. Refer to Table 7 for a statistical comparison between female and male DCs. 
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lassifying subjects for dementia. We see high connectivity for compo-
ents in the SM, DM, and CB networks. These networks are linked with
ementia in existing literature, which support the results of our method.
hereas when classifying gender of same subjects, the estimated DNC is

ifferent and show high connectivity for components in DM and reduced
onnectivity for SMN. Figure 8 d shows the FNC computed via PCC for
he same subjects. As FNC computed using PCC is only data dependent,
he FNC would remain same for all the tasks and shows the inflexibility
f the method. Figure 8 therefore shows a) our model learns task depen-
ent DNC and b) our model accurately finds networks linked with the
ownstream classification task. We see this as a significant advantage
12 
ver studies which compute a fixed/static FNC using PCC and hence is
ndependent of the downstream task. We see that Fig. 8 b which is the
earned connectivity structure when predicting age does not show high
onnectivity between networks and the connectivity values for SMN and
MN are almost same. This could be a reason of small age variance in

he dataset. 
We use statistical scores to verify the visual results. Table 8 shows

he statistical difference between the three DCs as a whole and between
MN and SMN. We also compare the estimated DCs with FC 8 d. 

We see that all three DNCs are extremely statistically different. It
s also proven that DMN is given higher connectivity scores for gender
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Fig. 8. We show how our model estimates flexible DNC structures based on the ground-truth signal. We train our model for different classification tasks and use 
same test subjects to compare the estimated DNC for the subjects. All figures are mean DNC estimated for the same subjects with 5 randomly-seeded trials. 8 a is the 
mean connectivity matrix estimated by our model when trained to classify dementia. We see high connectivity values for SC, SM, and CB networks. 8 c is the mean 
DNC for the same subjects when the model is trained for gender prediction. We notice lower SM network connectivity and higher connectivity for DM network when 
predicting gender of OASIS subjects. 8 d is the FNC computed using PCC. The FNC is independent of the task and would remain fixed (inflexible). 

Table 8 

We compute the statistical difference of the learned connectivity matrices for OASIS ICA when predicting dementia, age 
and gender. The results show that the learned connectivity matrices are highly statistically different and SMN gets higher 
connectivity scores than DMN for dementia prediction whereas the opposite is seen for gender prediction. 

Network 1 Network 2 Test Type P -value Avg. Connectivity 1 Avg. Connectivity 2 

Dementia_All Age_All 
t -test 5e-22 

0.323 0.168 
manwhitneyu 1e-38 

Dementia_All Gender_All 
t -test 2e-3 

0.323 0.311 
manwhitneyu 8e-4 

Age Gender 
t -test 2e-301 

0.168 0.311 
manwhitneyu 1e-301 

Dementia_DM Dementia_SM 

t -test 1e-7 
0.478 0.645 

manwhitneyu 8e-8 

Age_DM Age_SM 

t -test 6e-1 
0.294 0.308 

manwhitneyu 6e-2 

Gender_DM Gender_SM 

t -test 4e-1 
0.527 0.555 

manwhitneyu 1e-1 

FNC_DM FNC_SM 

t -test 3e-2 
0.487 0.580 

manwhitneyu 7e-3 

Dementia_DM Age_DM 

t -test 9e-6 
0.478 0.294 

manwhitneyu 5e-7 

Dementia_DM Gender_DM 

t -test 2e-1 
0.478 0.527 

manwhitneyu 1e-1 

Age_DM Gender_DM 

t -test 3e-7 
0.294 0.527 

manwhitneyu 5e-8 

Dementia_SM Age_SM 

t -test 8e-34 
0.645 0.308 

manwhitneyu 3e-23 

Dementia_SM Gender_SM 

t -test 4e-4 
0.645 0.555 

manwhitneyu 1e-4 

Age_SM Gender_SM 

t -test 1e-18 
0.308 0.555 

manwhitneyu 4e-17 

Table 9 

Dementia, gender classification and age prediction results on OASIS dataset. We compare our results with ML methods using 
FC computed via PCC. Even with hand-crafted features ML methods perform similarly as our model. We believe the same 
input because of FC being only data dependent is one of the reasons of ML methods performing lower than DICE for Dementia 
and age prediction. 

Dataset Model Task N_Folds Input Metric Score 

OASIS DICE Dementia classification 10 ICA AUC 0.752 

OASIS Logistic Regression Dementia classification 10 FNC AUC 0.745 
OASIS DICE Gender classification 10 ICA AUC 0.906 
OASIS Logistic Regression Gender classification 10 FNC AUC 0.948 

OASIS DICE Age prediction 10 ICA MAE 6.14 

OASIS Linear Regression Age prediction 10 FNC MAE 7.17 
OASIS Lasso Age prediction 10 FNC MAE 6.89 

13 
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Fig. 9. We map on the brain, the nodes and top 10% edges of the DCs, estimated for dementia and gender classification tasks, performed on OASIS dataset (same 
subjects). The size of the nodes is the sum of the outgoing and incoming edge weights. The arrows shows the direction of connectivity. We see a high number and 
size of nodes and edges for SMN and VIN for dementia 9 a, whereas for gender 9 b we see high node and edge size for DMN. Compare the red (DM) nodes and edges 
in Fig. 9 a with b in the left side figures. Figure 9 a also shows high connectivity between SM and VI networks which is missing in Fig. 9 b (right side figures). This 
reveals the networks and edges (graphs and subgraphs) relevant to the classification signal (e.g disorder) without need of comparison with other data. The results 
and their impact are further discussed in Section 4.3 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

14 
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Fig. 10. Five states computed using k-means on the DCs estimated by our model for FBIRN dataset. First row shows the k means of the estimated DCs, second row 

shows the percentage time spent by both groups in each state, with the total time points being 155. Time spent in each state by SZ and HC differ significantly and 
matches the existing literature. We see that a) time spent in each state is different by HC and SZ, b) SZ spend much more time in state 3 (weakly connected) than 
HC, c) HC spend more time than SZ in states (2,4, 5) which show high connectivity for VI, and SM networks, and d) Standard deviation of time for SZ is much higher 
(320.47) than HC (206.26) which shows that SZ stay in one state much more than HC which tend to change state more often. The stars denote the significance of 
difference in time spent in each state by the two groups. Table 6 shows the p -value significance ranges. 
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rediction whereas, SMN connectivity is much higher when predicting
ementia comparing to gender and age prediction tasks. To clear how
he connectivity values change for DMN and SMN we point out the av-
rage connectivity scores of the networks for dementia and gender clas-
ification and compare it with the values of DMN and SMN computed
ia PCC. The connectivity values in FC for SMN and DMN are 0.580 and
.487 respectively (and would remain same irrespective of the classifi-
ation task). Whereas, when classifying dementia our model show much
igher SMN average value of 0.64 and a little decreased value of 0.478
or DMN showing a focus on SMN despite having more female subjects
n the test set. When predicting gender for the same subjects the DNC
stimated by our model has a decreased SMN value of 0.555 and in-
reased value of 0.527 for DMN hence focusing less on SMN and more
n DMN when compared to the dementia classifying task thus verifying
hat our estimated DCs are task-dependent and not only data dependent.

e discuss the meaning and significance of this result in Section 4.3 . 
To see the matrices as graph of nodes (regions) and edges (connec-

ivity), we plot Fig. 8 a and c on the brain and show the results in Fig. 9 .
he figure shows high number of nodes and edges among components
f VIN and SMN and among the two networks for dementia classifica-
ion 9 a, and high number of nodes and edges among components in
MN for gender classification 9 b. 

.2.5. Dynamic connectivity states 

Studies like ( Allen et al., 2012; Calhoun et al., 2014; Hutchison et al.,
013; Sako ğlu et al., 2010 ) show that human’s brain FC is dynamic and
an be used to find patterns which are not visible in static FC studies.
hese studies show that dynamic FC show re-occuring patterns. To study
hese patterns, dynamic connectivity of the human brain is divided into
istinct k states ( Damaraju et al., 2014; Fu et al., 2021; Rashid et al.,
014 ). There are multiple methods proposed to find the k states with
-means being one of the most used methods. These studies show that
he transition and time spent in each state is different for patients (SZ,
ementia, autism) and HC. To validate our results and to find such pat-
erns we use k-means to find k (5) such states using the DCs estimated
y DICE for FBIRN dataset. We calculate and compare the time spent by
oth groups (SZ and HC) per state. 
15 
Figure 10 shows that SZ subjects spend more time in weakly con-
ected states (1,3) than HC which stay in states which show high con-
ectivity score for visual (VI) and sensorimotor (SM). We also see that
C tend to change state more often than SZ which spend ∼ 66% time

n one state (number 3). Existing studies ( Miller and Calhoun, 2020a;
020b; Yaesoubi et al., 2018 ) show that window-less approach can find
ynamic patterns that are not captured by the vastly used window-based
pproach. As DICE is an instantaneous model, we investigate if DICE
an capture more dynamic states than the window-based dynamic-FNC
tudies. For this purpose, using elbow method ( Marutho et al., 2018 ),
e found that the best k for the estimated DCs is not 5, and set k = 10
nd show the resultant states in Fig. 11 . We see the model captures ad-
itional states that were not visible with k = 5 . The additional states
ound show the pattern of directionality, specially in the states where
C spend more time than SZ. For example, in Fig. 10 , state 2 show
ense connectivity for components in VIN and the direction is from VI
o other states, and state 5 show similar direction but with sparse con-
ectivity. Figure 11 captures the additional state (9) which shows the op-
osite direction, that is, VIN has mostly incoming edges. We believe this
tate represents the brain activity when different networks (e.g. SMN)
re giving input to VIN to control the vision. We discuss this result in
ection 4.4 . 

.3. Temporal attention 

Our temporal attention module finds the important time-points that
re relevant for the downstream task (e.g. gender prediction). As not all
ime-points are equally important for the downstream task, and fMRI
ata has low temporal resolution, the temporal attention is an effective
ay of finding important bio-markers for neuroimaging dataset. Finding

he relevant time-points can help reduce the data and allow to focus on
ctivities at specific points. Figure 12 shows the weights assigned to the
ubjects of FBIRN. 

We show weights for 16 subjects (8 per class) with 10 randomly-
eeded trials. The results show that the temporal attention module is
ery stable and assign similar weights to the time-points for every trial.
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Fig. 11. We show 10 states captured by k-means on the temporal DCs estimated by DICE on FBIRN complete dataset. The rows shows the means and the percentage 
of time spent by HC and SZ subjects in each state. We see that DICE can capture more states than the standard (4–5) states captured by window-based approaches. 
The additional states not present in Fig. 10 show the change of direction in connectivity. State 9 shows the opposite direction of connectivity between VIN and other 
networks, where VIN has mostly incoming edges. The ratio of time spent by HC and SZ subject in different states is similar to the results of Fig. 10 . 

Fig. 12. Temporal Attention weights for one of the test folds (16 subjects) of 
FBIRN. Attention weights are computed using GTA module. X and y axis repre- 
sent time-points and subject number respectively. We show that for each sub- 
ject, the attention weights remain stable across multiple randomly-seeded trials 
(10). The values of the 10 trials are used to create the confidence interval for 
each subject. The consistency is greatly increased with an increase in number 
of training subjects. Note: For each subject we added the subject number to the 
attention weights to separate the weights, as for each subject the weights have a 
range of 0 − 1 . Dark and light colors represent SZ and HC subjects respectively. 

Table 10 

AUC score comparison on brain datasets with ICA 

components by using all, top 5% and bottom 5% 

time-points only. We train and test a logistic regres- 
sion (LR) model using the time-points identified by 
DICE and compare the results when using top and 
bottom 5% time-points. We see that using only top 
5% time-points are enough to almost reach the AUC 
using all time-points. 

Method FBIRN OASIS ABIDE 

100% DICE 0.86 0.752 0.722 
Top 5% LR 0.85 0.743 0.706 
Bottom 5% LR 0.566 0.548 0.532 
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To further check the correctness of the time-points selected by our
odel and how these time-points are useful in terms of classification per-

ormance, we perform an experiment where after training the model, we
se 𝐖 𝑡 of the top 5% values to train an LR model and then use the top 5%
ime-points of the test data to test the model. Similarly we perform ex-
eriments for bottom 5% values as well. Table 10 shows the comparison
or the three brain disorder dataset. The results show that the LR model
rovides high AUC score by just using 5% of the important time-points.
hus, it proves that a) not all time-points are important for classification
16 
f the downstream task and b) our model accurately finds the important
ime-points. We use an LR model for this experiment to show that the
earned top and bottom 5% values are not limited to our DICE model but
s generalized such that an independent LR module gives high classifi-
ation performance using the top 5% data identified by our model and
oes not learn on the low 5% data. Finally, our experiments also show
hat not using the temporal attention reduces the model classification
erformance by upto 10% A.12 . 

. Discussion 

Our experiments revealed a number of interesting properties of DICE
nd uncovered some interpretable directed connectivity graphs that we
eel are of high utility for the neuroimaging field. As supported by re-
ults, models with glass-box layer like DICE have a high potential for
tudying resting-state dynamics of the brain. In the following, we dis-
uss the most pertinent results. 

.1. Inter-network and directed connectivity 

Results in Sections 3.2.1 and 3.2.2 show that DICE infers DNC that
grees with the essential findings of the FC studies ( Arslan et al., 2018;
awahara et al., 2016; Kazi et al., 2021; Kim and Ye, 2020; Ktena et al.,
017; 2018; Ma et al., 2019; Parisot et al., 2018; Yan et al., 2017 ) and
rovides two additional aspects: inter-network connectivity and direc-
ion of connectivity. The inter-network connectivity is of great signifi-
ance as the brain is not made up of isolated networks and many tasks
equire information passing and neurons firing through multiple net-
orks. Thus making it crucial to find how these networks are connected

o each other if connected at all for patients and controls. Capturing the
ysconnectivity between networks for patients can lead to knowledge
iscovery about the functionality of the human brain and the effects of
rain disorders on it. Furthermore, finding directionality between net-
orks is also of great significance. We showed in experiments that our
odel captures the direction of connectivity between networks. The di-

ection of connectivity from VI to other networks, and from CC to SM
etworks is justifiable. Existing studies ( Breukelaar et al., 2017; Cole
nd Schneider, 2007; Tsai et al., 2019 ) show that cognitive control is
esponsible for functions like attention, remembering, and execution.
hese functions are often required when doing a motor task controlled
y sensorimotor, which hints at the direct effect of the CC network on
he SM network, captured by DICE. Regarding VI and other networks,
e know that VI is mostly a means of input (visuals) to our brain, which

s then processed by different parts of the brain. Thus, most of the flow
f information is from VI to other networks and few in the opposite
irection, which is required to control VI for accomplishing different
otor tasks controlled by SM. Therefore, our experiments also show

hat most incoming connections to VI are through the SM network, thus
ccurately capturing the flow of information between networks. This
ow of information is not captured in simple correlations. We believe
hese two aspects are crucial to understanding brain working and are
urrently missed in connectivity estimation methods such as FNC. 
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Directed connectivity directed influence of an intrinsic brain network
n other networks. Estimating the direction of connectivity may simplify
argeted interventions that are instrumental in establishing causal rela-
ions. Capturing causality between networks further helps to understand
omplex systems and answer counter-factual questions ( Schölkopf et al.,
021 ), and is left to future work. Our model finds non-negative relations
etween components/nodes, which we consider dependencies or rele-
ance rather than correlations. However, we understand that the nega-
ive correlations in FC and FNC are also helpful and provide descriptive
nformation. We think it might be an easy fix to incorporate negative
elations in connectivity matrices estimated by DICE. We discuss this in
ection Appendix B . 

.2. Interpretability 

Section 3.2.3 shows how the DC and DNC estimated by DICE are in-
erpretable in how accurately they capture the difference in connectivity
etween 1) schizophrenia patients and controls and, 2) male and female
roups. In classifying schizophrenia patients from controls, our model
earned the most significant differences were in the VI, SM, and DM net-
orks. Controls show robust connectivity of VI and SM with each other
nd with other networks, which is missing for SZ patients. The finding
f dysconnectivity and/or lower connectivity scores for VI and SM net-
orks for SZ patients is not surprising as there exists ample evidence

n prior studies of schizophrenia leading to multiple abnormalities re-
ated to visual and motor functions such as perception of contrast and
otion, detection of visual contours, and control of eye movements to
ame a few ( Butler et al., 2008; Chen et al., 1999; Kéri et al., 2002;
ilverstein and Rosen, 2015 ). These abnormalities certainly affect mo-
or skills which we feel is a reason for the low connectivity for SM and
I networks captured by our model for SZ patients. DICE also captures
yper-connectivity in DMN for SZ patients which is reported by existing
tudies ( Guo et al., 2017 ). 

Whereas in classifying gender in the same dataset, DICE emphasized
yper-connectivity in the DM network and hypo-connectivity for the SM
etwork for females compared to males. The differences captured in the
C and DNC for both tasks are supported by existing studies ( Culbreth
t al., 2021; Filippi et al., 2013; Kim et al., 2021; Lynall et al., 2010;
ak et al., 2016; Morgan et al., 2020; Ritchie et al., 2018; van den
euvel et al., 2010; Yu et al., 2011; Zhang et al., 2019; Zhu et al.,
020 ) that show the role of the DMN in gender classification and VI
ysconnectivity for schizophrenic patients. Similarly to existing stud-
es ( Ingalhalikar et al., 2014; Zhang et al., 2018b ), DICE shows that
emale subjects have higher connectivity between the contralateral ho-
ologue brain networks relative to males. 

DL models are commonly viewed as black-box models because of the
ifficulty of interpretation and not easily explained performance on the
asks they are trained on. These models can show excellent performance
n tasks such as classification based on the reasons that are not substan-
ially revealing about the input data nor their dynamics. One reason is
hortcut learning ( Geirhos et al., 2020 ): a DL model can classify images
ith or without airplanes with high accuracy by paying attention exclu-

ively to the background (blue sky). Although predictive, such models
annot help in knowledge discovery. To control for shortcut learning
e would like to be able to see why predictions are made. One ap-
roach is making DL model interpretable. For that a posthoc method
s often used, e.g., saliency maps ( Angelov et al., 2021; Lewis et al.,
021; Ras et al., 2021; Simonyan et al., 2014 ). Such methods explain
he input data by finding which part(s) of the input the model is most
ensitive to. Saliency maps have shown some good results in computer
ision tasks in 2d images. The use of saliency maps in neuroimaging and
emporal data has different challenges ( Liu et al., 2021 ) as the output
aps are noisy, difficult to interpret and does not provide good bound-

ries nor the connection between different salient regions. Selection of
he method for obtaining saliency maps is also something to consider
s some of the methods are architecture based. Hence, using saliency
17 
aps to get task-specific brain’s connectivity graph is not feasible using
urrent methods. To overcome the black-box nature of DL models and
void using a posthoc method, we focused on the interpretability of the
odel’s results. For this purpose, as brain disorders are commonly asso-

iated with disruptions in the connectivity pattern of brain networks, we
se only the learned connectivity matrices by our model for the down-
tream classification or prediction tasks, thus making the model extract
he abnormality in connectivity relevant to the ground-truth signal. One
ay to conceptualize about our approach is to think of the generated DC
nd DNC as a “glass-box layer ” (clear and interpretable) layer as noted
n Fig. 1 . This approach combines flexibility (the layer is trainable) with
nterpretability and enables the model to capture differences in the con-
ectivity of the groups in classification task. Regression is also possible
ith our approach, although we leave it for the future work. Our “glass-
ox layer ” approach enables learning the essential networks and their
onnection to other networks relevant to the training signal and directly
utput that without using a posthoc method. As the DC and DNCs esti-
ated by our model are based on learnable functions, the output ma-

rices can have slightly different values when the model is retrained,
hich is an attribute of DL models. Therefore, all the connectivity ma-

rices shown in the paper are averaged over several randomly-seeded
rials. 

.3. Task-dependent flexible DNC 

We fully utilize the flexibility of our DL model to learn task-
ependent (ground-truth signal) directed connectivity structures. We
how in Section 3.2.4 that our model estimates DNC structures for the
ame subjects that are distinct to the ground-truth task of dementia, age,
r gender. Hence our model can show the networks and their connec-
ivity crucial for specific downstream tasks. The networks identified by
he model through the learned DNC for dementia classification (SM, CB,
I) match the results of prior studies ( Albers et al., 2015; Filippi et al.,
017; Grant et al., 2014; Ingalhalikar et al., 2014; Jacobs et al., 2017 ).
hereas, for gender prediction, the most prominent network identified

y the network was DM, which again matches existing literature ( Filippi
t al., 2013; Kim et al., 2021; Mak et al., 2016; Ritchie et al., 2018 ). We
eel this is a strong validation of the ability of DICE to find disorder-
ependent networks and connectivity patterns. We showed in Fig. 8 a
hat our model focused more on SMN than DMN despite having almost
wo-thirds of female subjects in the test set. This result is significant
ecause the model learned that the SMN connectivity, is more impor-
ant than DMN for the downstream task of dementia classification and
ence enhances the signals for SMN. This eliminates the need to acquire
trictly matched subjects with only the difference(s) for which you want
o find the relevant networks and connectivity. For example, when try-
ng to find the networks related to schizophrenia using PCC, one needs to
nd two groups (schizophrenia patients and controls) that do not have
ny other differences. Extraneous differences would create ambiguity
egarding whether the networks identified are related to the disorder
schizophrenia) or some other difference, e.g., gender. Instead of ex-
licitly confronting the confounding factors by regressing them out or
aking equivalent measures, DICE performs the “de-confounding ” im-
licitly based on the training labels. 

Another notable property of our model is that it finds the relevant
etworks and the connectivity structures (sub-graphs) without receiv-
ng them during training, making DICE a self-supervised graph learning
odel. 

.4. Dynamic DNC and temporal-attention 

As hypothesized, and shown in previous studies ( Allen et al., 2012;
alhoun et al., 2014; Hutchison et al., 2013; Sako ğlu et al., 2010 ) results

n Section 3.2.5 show that connectivity between brain’s intrinsic net-
ork is dynamic, and dynamic connectivity can capture patterns which
re missed by static models. Notably, controls and SZ patients spend
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ifferent amounts of time in each state 10 . Controls spend more time
han SZ patients in strongly connected states, especially for visual and
ensorimotor networks. On the other hand, SZ patients spend time in
eakly connected states and do not often spend time in other states.
imilar patterns were observed in FNC studies ( Damaraju et al., 2014;
abany et al., 2019; Rashid et al., 2014; Wang et al., 2014; Yang et al.,
022 ). 

Moreover, using all subjects in the FBIRN ( Keator et al., 2016 ), our
odel finds additional states doubling the state resolution. We explain

his temporal resolution increase by instantaneity of directed connectiv-
ty estimation in DICE in contrast to using a sliding window. Therefore,
stimating connectivity instantaneously makes the model robust and
nds patterns that are missed when using a window-based approach.
nother explanation and an additional factor is the increased richness
f representation via a directed graph - the connectivity matrices of DICE
ave twice the number of parameters compared to FC and FNC. Our ex-
eriment with k = 10 states show similar patterns of strongly and weakly
onnected states but they now vary in the direction of the connectiv-
ty. This result shows that both the connectivity strength and direction
f connectivity are dynamic (changes over time). As this state is rare
based on time spent), it would be harder for window-based approaches
o capture it. It would be interesting to see when and how the direction
f connectivity changes and how external factors like performing a task
an trigger these changes. This, however, is a topic of the future work. 

Finally, we show that not all time-points of the fMRI data are equally
mportant to the downstream prediction task and discriminative con-
ectivity matrices exhibit temporal dynamics. Using temporal attention,
ur model finds important time-points relevant to the ground-truth sig-
al used in training. This further helps in interpretability as our model
nds the time-points where the brain activity shows signals relevant to
he task. Potentially, this would also be important in task data where
he subject is asked to perform different tasks, and the DICE model can
e used to find out which task revealed the symptoms of the under-
ying disorder. Our experiments show that temporal attention assigns
table and consistent weights to time-points across different randomly-
eeded tasks. We also notice that a) just 5% of time-points are sufficient
or achieving high classification performance and b) exclusion of tem-
oral attention (assigning the same weight to every time-point) nega-
ively affects classification performance. Consistent temporal attention
alues across randomly-seeded trials further strengthens the evidence
f temporally dynamic discriminative DCs and the value of attention
echanism. As our experiments show, our attention module is indeed

eliable per the definitions and potential issues discussed by Jain and
allace (2019) and Wiegreffe and Pinter (2019) . As a learnable method,
ICE and other “glass-box layer ” models need to be able to consistently
cross training runs assign temporal attention values and estimate con-
ectivity between nodes, whereas inflexible methods computing corre-
ations such as PCC do not have this property. In a way, flexibility of
he learnable model comes with an additional requirement of stability
f learned interpretations. Even though our DICE model works well by
howing high classification performance and assigning consistent self
nd temporal attention values on relatively small datasets, as we show,
aving more subjects for training leads to an even more consistent as-
ignment of temporal weights in our experiments. 

. Conclusions 

Our work demonstrates importance of learnable interpretable esti-
ators of dynamic, directed, and task-dependent connectivity graphs

rom fMRI data. DICE learns to estimate interpretable dynamic and di-
ected graphs that represent the directed connectivity among brain net-
orks. The end-to-end training process removes the need for existing
xternal methods such as PCC and K-means, which are interpretable
ut inflexible and strictly depend on the input data. Implementing DICE
ith glass-box layer allowed us to bypass the need for a posthoc method

or interpreting learned model representations. 
18 
Connectivity matrices estimated by DICE show how brain connec-
ivity changes across disorders, genders, and age. The learned connec-
ivity matrices help understand the human brain and its disorders as
he actual ground-truth connectivity matrix is not available. Further-
ore, we moved from FC and FNC to DC and DNC to learn the direc-

ion of connectivity and simultaneously removed the issue of window
izing of input data by making the model instantaneous. The learned
onnectivity matrices provide knowledge that adheres to existing stud-
es. Utilizing flexibility of DL models in learning data representations,
e show that using the same data, distinct connectivity structures can
e learned based on the downstream task and the ground-truth signal.
his flexibility allows acquiring more information from the data by us-

ng different training labels, which would require a much more involved
rocess of data selection and manual filtering out of confounding factors
or methods that are fully determined by the data, like PCC. Our model
ighlights different networks linked with the downstream classification
ask, e.g., the default mode network for gender prediction. Unlike other
nterpretable models that may pay for it with a decrease in classification
erformance ( Dhurandhar et al., 2018; Johansson et al., 2011; Luo et al.,
019; Shukla and Tripathi, 2012 ), DICE beats state of the art methods
n multiple classification problems on four neuroimaging datasets. 

For classification DICE uses the learned connectivity structures. To-
ether with the temporal weights these structures are reasonably con-
istent across varying seeds. Notably, DICE’s performance drops with-
ut the use of temporal attention. The temporal attention module of the
odel finds interpretable bio-markers crucial to performing the classifi-

ation task and shows that only a small fraction of time-points is enough
or attaining maximum performance. Notably, not all time points are
iscriminative, as evident from the sparse distribution of temporal at-
ention weights in Fig. 12 and high predictive power of just the top 5%
f the attention weights of Table 10 . 

As the ground truth for the dynamic graph structure in resting state
MRI is unavailable, we believe there is a need for models with “glass-
ox layer “ like DICE that can estimate this structure based only on the
ata and classification labels. 

In future work, we would like to omit pre-processing with a dimen-
ionality reduction method —like the used here ICA or region-based par-
ellation —and train a model end-to-end on the voxel-level data. This,
owever, may require substantially larger datasets and may not be as
seful as the current model for an average sized research dataset. As
ICE estimates the direction of connectivity, for future work, we would

ike to examine how the direction of connectivity changes through time
nd during tasks for HC and patients. 
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Table A2 

We show how hidden dimensions of different modules of the model affect clas- 
sification performance. As we do not fine-tune the hyper-parameters rigorously 
for each experiment, it is possible to get better results than ones reported in the 
main body of the paper. Similar results were seen for other datasets as well. We 
also show how removing the temporal attention reduces the model’s classifica- 
tion performance. None means the final connectivity matrix 𝐖 

𝑓 was just the 
average of each 𝐖 𝑡 . 

Dataset 
biLSTM 

dim. 
Self-attention 
dim. 𝛾2 

Temporal 
Attention 

Mean 
AUC 

Median 
AUC 

FBIRN 100 48 0.05 GTA 0.86 0.861 
FBIRN 100 48 0.05 None 0.733 0.764 
FBIRN 100 64 0.05 GTA 0.858 0.861 
FBIRN 128 64 0.025 GTA 0.865 0.875 
FBIRN 128 64 0.025 None 0.761 0.778 
FBIRN 64 32 0.05 GTA 0.849 0.858 

Table A3 

We show how permuting the order of the subjects can lead to a small variation 
in the classification performance. 

Dataset 
biLSTM 

dimension 
Self-attention 
dimension 𝛾2 Permutation 

Mean 
AUC 

Median 
AUC 

FBIRN 100 48 0.05 Randomly 
done 

0.86 0.861 

FBIRN 128 64 0.025 Randomly 
done 

0.865 0.875 

FBIRN 100 48 0.05 Default order 0.86 0.889 
FBIRN 128 64 0.025 Default order 0.858 0.875 
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ppendix A. Ablation study 

In this section, we show the stability of our DICE model in terms of
lassification performance by changing different hyper-parameters. We
lso show that as we did not extensively fine-tune the model for different
xperiments, it is possible to achieve better classification performance
han reported in the paper. In Table A.11 we show the effect of number
f test folds on classification performance. Table A.12 shows the effect
n performance when changing the size of hidden dimensions. Also, as
BIRN experiments with 18 fold testing created the biggest leakage, the
xperiment without leakage was necessary for completeness and shows
odel performs similarly. All other experiments had leakage of 1–2 sub-

ects whose effect should be insignificant. In Table A.13 , we show that it
s possible to get a bit different classification results than ones reported
n the main body by permuting the subjects in different order. 
Table A1 

We show the effect of the different number of test folds on 
the classification performance of the model using ICA data. 
We also do an experiment (18, no leakage) where the last fold 
had all the remaining subjects to prevent any data leakage. 
We see that the model shows similar performance on different 
number of test folds with an increase in performance with a 
greater number of folds. 

Dataset Number of test folds Mean AUC Median AUC 

FBIRN 4 0.859 0.861 
FBIRN 18 0.86 0.861 
FBIRN 18, no leakage 0.86 0.861 
ABIDE 5 0.705 0.71 
ABIDE 10 0.722 0.732 
OASIS 5 0.741 0.749 
OASIS 10 0.752 0.758 
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ppendix B. Added loss term and DNC with negative weights 

Connectivity of a node with itself equal to one is the only known
nd correct bias we can use while estimating connectivity matrix be-
ween nodes. Therefore we experimented by adding a new loss term in
q. (5) and create following two variations. 

𝑜𝑠𝑠 = CrossEntropy ( ̂𝐲 , 𝐲) + 𝛽(1 − 

1 
𝑁 

tr ( tanh ( 𝐖 

𝑓 ))) + 𝜆‖𝜽‖1 (B.1)

𝑜𝑠𝑠 = CrossEntropy ( ̂𝐲 , 𝐲) + 𝛽(1 − 

1 
𝑁 

tr ( sigmoid ( 𝐖 

𝑓 ))) + 𝜆‖𝜽‖1 (B.2)

The second term in Eqs. (B.1) and (B.2) is used to encourage the
odel to produce connectivity matrices with the average value of the
ain diagonal closer to 1. tr represents the trace of a matrix. 𝛽 is
 regularization coefficient and we kept it at 0.75. 𝛽 equal to 1 does
ush the diagonal closer to 1 but leads to reduction in classification
erformance. We found in our experiments that the second term re-
ults in more stable and easier to visualize matrices across multiple tri-
ls. The added term did not significantly affect the classification per-
ormance as shown in Table B.14 with tanh and sigmoid activation.
igure B.13 shows the same matrix as Fig. 6 a created with the new loss
q. (B.1) . 

We also re-create Fig. 4 using the new loss Eqs. (B.1) and (B.2) and
how the estimated DNC in Fig. B.14 . The added loss terms noticeably
ncrease the values on the diagonal of the connectivity matrices closer
Table B1 

We compare the classification performance on FBIRN ICA 

data with the new term added in the loss function. There 
is not a significant difference in performance, though 
marginal improvement is seen with sigmoid activation. 

Dataset Added loss term Mean AUC Median AUC 

FBIRN None 0.86 0.861 
FBIRN tanh 0.859 0.861 
FBIRN sigmoid 0.862 0.875 

http://bdr.birncommunity.org:8080/BDR/
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Fig. B1. DNC estimated by DICE model using the loss Eq. (B.1) . We used the same FBIRN subjects as in Fig. 6 a. 

Fig. B2. Comparison of the DNCs learned with the additional regularization terms in the loss function against the DNC created using original loss and PCC FNC. As 
expected, regularization pushes the diagonal closer to 1. Also the difference between values of diagonal and non-diagonal elements is higher in tanh based DNC B.14 b 
as compared to sigmoid based DNC B.14 c. Similarly to Fig. 4 these matrices are averaged across multiple tries. 
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Fig. B3. DNC estimated by DICE model by incorporating negative weights in 
o 1. Notably, the difference between diagonal and non-diagonal values
s higher in DNC with tanh loss term than sigmoid based DNC. We expect
hat this is probably because the output value for non-negative input (0)
n sigmoid is 0.5 and not 0 as in tanh. Hence, the loss for sigmoid is in
he range [0-0.5] and not [0–1]. The choice of the function depends on
he application and factors such as the presence of self edges, negative
dges, the range of the edge weights etc. 

As FC and FNC are computed using PCC method to measure the cor-
elations, it has negative correlations as well. These negative correla-
ions are used in different studies and have meaningful interpretations.
herefore, we try to accommodate negative values in the DC and DNC
stimated by our model. This can be done easily by making a small
weak in the self-attention part of the model. Equation (2) uses softmax
unction to get the weights and forces them in the range 0–1. Negative
eights can be achieved by replacing the softmax function with tanh.
e recreate Fig. 4 a by estimating negative weights as well. We see in

ig. B.15 that DICE can capture the negative weights by making a small
weak in the self-attention part but detail experiments are required to
heck the classification performance, stability, and interpretation if neg-
tive weights are incorporated. Also, incorporating negative weights re-
uire some hyper-parameter changes as well. We leave this for future
ork. 
self-attention module. We used the same FBIRN subjects as in Fig. 4 a. The diag- 
onal is manually assigned 0 weight. 

20 
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