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Abstract—Being spontaneous, micro-expressions are useful in the inference of a person’s true emotions even if an attempt ismade to

conceal them. Due to their short duration and low intensity, the recognition ofmicro-expressions is a difficult task in affective computing. The

early work based on handcrafted spatio-temporal featureswhich showed some promise, has recently been superseded by different deep

learning approacheswhich nowcompete for the state of the art performance. Nevertheless, the problemof capturing both local and global

spatio-temporal patterns remains challenging. To this end, herein we propose a novel spatio-temporal transformer architecture – to the best

of our knowledge, the first purely transformer based approach (i.e., void of any convolutional network use) for micro-expression recognition.

The architecture comprises a spatial encoder which learns spatial patterns, a temporal aggregator for temporal dimension analysis, and a

classification head. A comprehensive evaluation on threewidely used spontaneousmicro-expression data sets, namely SMIC-HS, CASME

II andSAMM, shows that the proposed approach consistently outperforms the state of the art, and is the first framework in the published

literature onmicro-expression recognition to achieve the unweighted F1-score greater than 0.9 on any of the aforementioned data sets. The

source code is available at https://github.com/Vision-Intelligence-and-Robots-Group/SLSTT.

Index Terms—Emotion recognition, long-term optical flow, temporal aggregator, self-attention mechanism

Ç

1 INTRODUCTION

FACIAL expressions play an important role in interpersonal
communication and their recognition is one of the most

significant tasks in affective computing. Though there some
disagreement on this remains, a notable number of psycholo-
gists believe that although due to different cultural environ-
ments individuals use different languages to communicate,
the expression of their emotions is rather universal [1]. Cor-
rectly recognizing facial expressions is important in general
communication and can help understanding people’smental
state and emotions.

When colloquially used, the term ‘facial expressions’ refers
to what are more precisely technically termed facial macro-

expressions (MaEs).While crucial for human interaction, provid-
ing a universal and non-verbal means of articulating emotion
[2], facial macro-expressions can be effected voluntarily which
means that they can be used to deceive. In other words, a per-
son’smacro-expressionmaynot accurately represent their truly
felt emotion. However, whatever the conscious effort, felt emo-
tions effect short-lasting contraction of facial muscles which
are expressed involuntarily under psychological inhibition. The
resulting minute, sudden, and transient expressions are
referred to asmicro-expressions (MEs). After being first observed
and recognized as a phenomenon of interest by Haggard and
Isaacs [3], and then further elaborated on by a case study
reported byEkman andFriesen [4],MEs began to be researched
more widely by psychologists, and in the last decade attracting
interest within the field of computer vision [5]. In contrast to
MaEs, MEs are subtle. They are exhibited for 0.04s to 0.2s [1],
and with lesser facial movement. These characteristics make
MEs harder to be recognized than MaEs, whether manually
(i.e., by humans) or automatically (i.e., by computers).

The seminal work by Pfister, et al. and the release of the
database of micro-expression movie clips, namely SMIC-sub
(Spontaneous Micro-expression Corpus) [6], effected a
marked empowerment of computer scientists in the realm of
micro-expression recognition (MER). The first generation of
solutions built upon the well-established computer vision
tradition and introduced a series of handcrafted features,
such as Local Binary Pattern-Three Orthogonal Planes (LBP-
TOP) [7], 3 Dimensional Histograms of Oriented Gradients
(3DHOG) [8], Histograms of Image Gradient Orientation
(HIGO) [9] and Histograms of Oriented Optical Flow
(HOOF) [10] and their variations. The next generation shifted
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focus towards Convolutional Neural Network (CNN) based
deep learning methods [11], [12], [13], [14], [15]. Early work
by and large uses convolutional kernels to extract spatial
information from micro-expression video frames. This kind
of pixel level operators can be considered as capturing
“short-range”, local spatial relationships. “Long-range”, global
relationships between different spatial regions have also
been proposed and studied, notably bymeans of Graph Con-
volutional Network (GCN) based architectures [16], [17],
[18], [19], [20]. The activations of Facial Action Units (AUs)
are generally used as nodes to build graphs. The relation-
ships between different AU engagements are combined with
image features to improve the discriminatory power in the
context ofMER.However, though these approaches consider
global spatial relations so as to assist learning, they can only
learn these after local features are extracted, i.e., they are
unable to learn both kinds of relations jointly.

In order to capture automatically both short- and long-
range relations at the same time, we apply Multi-head Self-
attention Mechanism (MSM) instead of a Convolutional
Kernel as the cornerstone of our deep learningMER architec-
ture. As shown in Fig. 1, the relations between block 1 andN
will hardly ever be learnt by CNN but has been considered
at the beginning of MSM. MSM based networks are called
Transformer. Short-range and long-range relationships
between elements of a sequence can be learned in a parallel-
ized manner because transformers utilize sequences in their
entirety, as opposed to processing sequence elements
sequentially like recurrent networks. Most recently, trans-
former networks came to the attention of the CV community.
By dividing them into smaller constituent patches, two-
dimensional images can be converted into one-dimensional
sequences, translating the spatial relationships into the rela-
tionships between sequence elements (image patches). In
this way, transformer networks can be simply applied to
vision problems and on various tasks they have outper-
formed CNNs [21]. Examples include segmentation [22],
image super-resolution [23], image recognition [24], [25],
video understanding [26], [27] and object detection [28], [29].

Most MER research in the published literature is video
based, as Ben et al. elaborated [30], though there is a small
but notable body of work on single-frame analysis [31], [32],
[33]. This statistic reflects the consensus that for best perfor-
mance both spatial and temporal information need be con-
sidered. In particular, absolute and relative facial motions
are extracted and analysed through spatial and temporal
features respectively. Most handcrafted methods in exis-
tence use the same kind of operator to detect spatial and
temporal information from different dimensions by consid-
ering the frames as 3D data. The resulting spatio-temporal

features with uniform format are used together to imple-
ment video based MER. In deep learning based methods,
spatial features are mainly extracted by means of a convolu-
tional neural network. Some concatenate spatial features
extracted from each frame and others use recurrent neural
networks to derive temporal information. To integrate vari-
ous spatio-temporal relations, our design makes use of
long-term temporal information in spatial data (i.e., each
frame of video sample) prior to the spatial encoder, and a
temporal aggregation block to fuse both short- and long-
term temporal relationships afterwards.

In this work we show how a transformer based deep
learning architecture can be applied to MER in a manner
which outperforms the current state of the art. The main
contributions of the present work are as follows:

1) We propose a novel spatio-temporal deep learning
transformer framework for video based micro-
expression recognition, which we name Short and
Long range relation based Spatio-Temporal Transformer
(SLSTT), the structure whereof is summarized in
Fig. 2. To the best of our knowledge, ours is the first
deep learning MER work of this kind, in that it does
not employ a CNN at any stage, but is rather entirely
centred on a transformer architecture.

2) We use matrices of long-term optical flow, computed
in a novel way particularly suited for MER, instead
of the original colour images as the input to our net-
work. The feature ultimately arrived at combines
long-term temporal information and short- and
long-range spatial relations, and is derived by a
transformer encoder block.

3) We design a temporal aggregation block to connect
spatio-temporal features of spatial relations extracted
from each frame by multiple transformer encoder
layers and achieve video based MER. The empirical
performance and analysis of mean and LSTM (long
short-termmemory) aggregators is presented too.

We evaluate our approach on the three well known
and popular ME databases, Spontaneous Micro-Expression
Corpus (SMIC) [34], Chinese Academy of Sciences Micro-
Expression II (CASME II) [35] and Spontaneous Actions and

Fig. 1. Comparison of the different spatial feature extraction methods of
CNN and transformer.

Fig. 2. The framework of proposed Short and Long range relation based
Spatio-Temporal Transformer (SLSTT).
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Micro-Movements (SAMM) [36], in both SoleDatabase Evalu-
ation (SDE) and Composite Database Evaluation (CDE) set-
tings and achieve state of the art results.

2 RELATED WORK

2.1 Micro-Expression Recognition

Since the publication of the SMIC data set in 2013, the volume
of research on automatic micro-expression recognition has
been increasing steadily over the years. From the handcrafted
computer vision methods in the early years to the deep learn-
ing approachesmore recently, themain ideas ofmicro-expres-
sion feature extraction could be categorized as primarily
pursuing either a spatial strategy or a temporal one.

2.1.1 Spatial Features

The fundamental challenge of computer vision is that of
extracting semantic information from images or videos.
Whatever the approach, the extraction of some kind of spa-
tial features is central to addressing this challenge. Micro-
expression recognition is no exception. In a manner similar
to many gradient based features applied previously on
generic computer vision tasks, Polikovsky et al. [8] pro-
posed the use of a gradient feature adapted to MER to
describe local dynamics of the face. The magnitudes of local
gradient projections in the XY plane is used to construct
histograms across different regions, which are used as spa-
tial features. LBP quickly became the most popular operator
for micro-expression analysis after Pfister et al. [6] first
applied it to MER. This operator describes local appearance
in an image. The key idea behind it is that the relative
brightness of neighbouring pixels can be used to describe
local appearance in a geometrically and photometrically
robust manner. Its widespread use and favourable perfor-
mance often make it the default baseline method when new
data sets are published, or a new ME related task proposed.
As for deep learning approaches, CNN model can be
thought as a combination of two components: a feature
extraction part and a classification part. The convolution
and pooling layers perform spatial feature extraction.

Further to local appearance based features, numerous
other strategies have been described for spatial feature
extraction in micro-expression analysis. One of the simplest
and commonest of these employs facial Region Of Interest
(ROI) segmentation. Polikovsky et al. [8] segmented each
face sample into 12 regions according to the Facial Action
Coding System (FACS) [37], each region corresponding to an
independent facial muscle complex, and applied appearance
normalization to individual regions. Others havemodified or
extended this strategy, e.g., employing different methods for
segmentation or different salient regions – 11 [38], 16 [39], 36
[10] instead of 12 of Polikovsky et al. Spatial feature operators
are applied with each ROI rather the whole image, thus pro-
viding a more nuanced description of the face. In recent
years, a more principled equivalent of this strategy (in that it
is learnt, rather than predetermined by a human), can be
found in the form of attention blocks applied within neural
networks to improve their ability to learn spatial features.
These blocks can generate weight masks for feature maps,
helping a network pay greater attention to significant
regions. Most recently, GCNs have also been used within

deep learning frameworks as a means of capturing spatial
information, often using AUs as correponding to graph
nodes. For example, Lei et al. [20] segment node patches
based on facial landmarks and fuse them with an AU GCN.
Xie et al. [18] infer AU node features from the backbone fea-
tures by global average pooling and use them to build an AU
relation graph for GCN layers. These optimization measures
use a priori knowledge (AUs in FACS) to enhance the
extracted spatial features. Long-range spatial relationships
are not directly learnt by such networks.

2.1.2 Temporal Features

Since one of the most characteristic aspects of micro-expres-
sions is their sudden occurrence, temporal features cannot
be ignored. While some methods in the literature do use
only the single, apex frame instead of all frames in each ME
sample [31], [32], [33], [40], most employ all in the range
between the onset frame and the offset, thus treating all
temporal changes within this time period on the same foot-
ing. Some go further and employ temporal frame interpola-
tion (as indeed we do herein) so as to increase the frame
count [6], [9], [10], [12], [39].

A vast number of handcrafted feature based approaches
treat raw video data as a 3D spatio-temporal volume, treat-
ing the temporal dimension as no different than the spatial
ones. In other words, they apply the same kind of operator
used to extract spatial features on pseudo-images formed
by a cut through the 3D volume comprising one spatial
dimension and the temporal dimension. For example, in
LBP-TOP, LBP operators are applied on XT and YT planes
to extract temporal features, and their histogram across the
three dimensions forms the final representation. 3DHOG
similarly treats videos as spatio-temporal cuboids with no
distinction made between the three dimensions, but argu-
ably with even greater uniformity than LBP-TOP in that the
descriptor itself is inherently 3D based. Similar in this
regard are optical flow based features, which too inherently
combine local spatial and temporal elements – the use of
optical strain [41], flow orientation [10] or its magnitude
[31] are all variations on this theme.

As an alternative to the use of raw appearance imagery
as input to a deep learning network, the use of pre-proc-
essed data in the form of optic flow matrices has been pro-
posed by some authors [15], [19], [42]. In this manner,
proximal temporal information is exploited directly. On the
other hand, the learning of longer range temporal patterns
has been approached in a variety of ways by different
authors. Some extract temporal patterns simply by treating
video sequences as 3-dimensional matrices [16], [41], [43],
rather than 2-dimensional ones which naturally capture sin-
gle images. Others employ structures such as the recurrent
neural network (RNN) or the LSTM [12], [44]. In addition to
the use of off-the-shelf recurrent deep learning strategies,
recently there has been an emergence of methods which
apply domain specific knowledge so as to make the learning
particularly effective for micro-expression analysis [15].

2.2 Transformers in Computer Vision

For approximately a decade now, convolutional neural net-
works have established themselves as the backbone of most
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deep learning algorithms in computer vision. However,
convolution always operates on fixed size windows and is
thus unable to extract distal relations. The idea of a trans-
former was first introduced in the context of NLP. It relies
on a self-attention mechanism, learning the relationships
between elements of a sequence. Transformers are able to
capture ‘long-term’ dependence between sequence elements
which is challenging for conventional recurrent models to
encode. By dividing an image into sub-images and impos-
ing a consistent ordering on them, a planar image can be
converted into a sequence, so spatial dependencies can be
learned in the same way as temporal features. For this rea-
son, transformer based deep learning architectures have
recently gained significant attention from the computer
vision community and are starting to play an increasing
role in a number of computer vision tasks.

A representative example in the context of object detec-
tion is the DEtection TRansformer (DETR) [28] framework
which uses transformer blocks first, for regression and
classification, but the visual features are still extracted by a
CNN based backbone. The Image Generative Pre-Training
(iGPT) approach of Chen et al. [45] attempts to exploit the
strengths of transformers somewhat differently, pre-train-
ing BERT (Bidirectional Encoder Representations from
Transformers) [46], originally proposed for language
understanding, and thereafter fine tuning the network
with a small classification head. iGPT uses pixels instead
language tokens within BERT, but suffers from significant
information loss effected by a necessary image resolution
reduction. In the context of classification, the Vision Trans-
former (ViT) approach of Dosovitskiy et al. [24] applies
transformer encoding of image patches as a means of
extracting visual features directly. It is the first pure vision
transformer, and in its spirit and design, follows the origi-
nal transformer [47] architecture faithfully. As such, it
facilitates the application of scalable transformer architec-
tures used in NLP effortlessly.

Following these successes, transformers have been
applied to a variety of computer vision tasks, including
those in the realm of affective computing [48], [49]. Nota-
ble examples include facial action unit detection [50] and
facial image-based macro-expression recognition [51].
However, none of the existing approaches to micro-
expression recognition adequately make use of both the
spatial and temporal information due to the design diffi-
culties posed by the challenges we discussed in the pre-
vious sections.

3 PROPOSED METHOD

In the present work we propose a method that takes advan-
tage both of the physiological understanding of micro-expres-
sions and their characteristics, as well as of the transformer
framework. The approach overcomes many of the weak-
nesses of the existing MER methods in the literature as
discussed in the previous section. Importantly, our method is
able to extract and thus benefit both fromproximal (i.e., short-
range) and distal (i.e., long-range) spatio-temporal features.
Each element of the proposed framework is laid out in detail
next, corresponds to each sub-section.

3.1 Long-Term Optical Flow

Optical flow describes the apparent motion of brightness
patterns between frames, caused by the relative movement
of the content of a scene and the camera used to image it
[52]. If the camera is static, optical flow can be used to infer
both the direction and the magnitude of an imaged object’s
movement from the change in the appearance of pixels
between frames [53].

Optical flow is inherently temporally local, i.e., save for
practical considerations (numerical, efficiency, etc.) it is
computed between consecutive frames of sequence. This
introduces a problem when micro-expression videos are
considered, created by the already noted limited motion
exhibited during the expressions. Therefore, herein we pro-
pose to calculate optical flow between each sample frame
and the onset frame instead of consecutive frames, see
Fig. 3. To see the reasons behind this choice, consider Fig. 4
which shows optical flow fields of consecutive frames start-
ing with the micro-expression onset frame. It can be readily
observed that the fields are rather similar up to the apex
frame, which can be attributed to the aforementioned brev-
ity of the expression, with a similar trend thereafter but in
the opposite direction. In contrast, our, temporally non-local
modified optical flow – long-term optical flow in a manner
of speaking – exhibits a much more structured pattern,
always being in the same direction, increasing in magnitude
up to the apex frame and declining in magnitude thereafter.

Fig. 3. Different computing mechanism between short- and long-term
optical flow.

Fig. 4. Illustration of optic flow computed between the onset and the apex
frame, corresponding to the motion effected by the activation unit Brow
Lowerer (AU4). Compare with the one computed between consecutive
frames.
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This results in much more stable and discriminative fea-
tures associated with each micro-expression.

3.2 Spatial Feature Extraction

The key idea underlying the proposed method lies in the
extraction of long-range spatial relations from each frame
using a transformer encoder, with images as before being
treated as sequences of constituent patches. More specifi-
cally, input frames are first represented as vector sequences
with local spatial features of each image patch. The resulting
sequences are then fed into the transformer encoder for
long-term spatial feature extraction.

3.2.1 Input Embedding and Short-Range Spatial

Relation Learning

The standard transformer receives a 1D sequence as input.
To handle 2D images, we represent each image as a
sequence of rasterized 2D patches. Herein we do not use
appearance images, that is the original video sequence
frames, as input but rather the corresponding optical flow
fields. An input embedding block is proposed as a means of
representing input images as vector sequences for input to
the transformer encoder.

The general input embedding mechanism considers the
image X 2 RH�W�C as a sequence of non-overlapping P �
P pixel patches, where H, W , and C are respectively the
height, the width, and the channel count of the input. Differ-
ent from the “separate and flat” linear patch embedding
proposed by Dosovitskiy et al. [24], we first extract local
spatial features in patch regions with a patch-wise fully con-
nected layer. Patches of image X are represented as Xp 2
RN�ðP2;CÞ. As shown in Fig. 5, we extract the short-range
spatial features from image X to feature map X 2 R

H
P�W

P �D,
flatten and transpose them to N D-dimensional vectors,
where N ¼ HW

P2 the resulting number of patches in each
image. D-dimensional vectors are passed through all trans-
former encoder layers. The specific values of parameters
used in our experiments are stated in Section 4.

After that, a learnableD-dimensional vector is concatenated
with the sequence, as the class token (Z0½0� ¼ xclass), whose
state as the output of the transformer encoder (ZLT

½0�). The
effective input sequence length for the transformer encoder is
thusN þ 1. Thena position embedding is added to each vector

in the sequence. Thewhole input embedding procedure can be
described as follows:

Z0 ¼ ½Xclass;X
1
pE;X2

pE; . . .;XN
p E� þEpos;

E 2 RðP2;CÞ�D;Epos 2 RðNþ1Þ�D; (1)

where Z0 2 RðN�DÞ is the input of the transformer encoder.

3.2.2 Long-Range Spatial Relation Learning by

Transformer Encoder

After short-range spatial relation are extracted from the
input long-term optical flow fields of each frame and embed-
ded as vectors, they are passed to a transformer encoder for
further long-range spatial feature extraction. Our encoder
contains LT transformer layers; herein we use LT ¼ 12,
adopting this value from the ViT-Base model of Dosovitskiy
et al. [24] (the pre-trained encoder we use in experiments).
Each layer involves two blocks, a Multi-head Self-attention
Mechanism (MSM) and a Position-Wise fully connected
Feed-Forward network (PWFF), as shown in Fig. 6. Layer
Normalisation (LN) is applied before each block and residual
connections after each block [54], [55]. The output of the
transformer layer can bewritten as follows:

Z0
l ¼ MSMðLNðZl�1ÞÞ þ Zl�1; l ¼ 1. . .LT ; (2)

Zl ¼ PWFF ðLNðZ0
lÞÞ þ Z0

l ; l ¼ 1. . .LT ; (3)

where Zl is the output of layer l. The PWFF block contains
two layers with the Gaussian Error Linear Unit (GELU)
non-linear activation function. The feature embedding
dimension thereby first increases from D to 4D and then
reduces back toD, which equals 768 in our experiments.

Multi-head attention allows the model to focus simulta-
neously on information content from different parts of the
sequences, so both long-range and short-range spatial rela-
tions can be learnt. An attention function is mapping a
query and a set of key-value pairs to the output, a weighted
sum of the values. The weights are computed using a com-
patibility function of the queries with the corresponding
keys, and they are all vectors. The self-attention function is
computed on a set of queries simultaneously. The queries,
keys and values can be grouped together and represented
as matrices Q, K and V , so the computation of the matrix of

Fig. 5. Long-term optical flow fields are as inputs of the Input Embedding blocks. After short-range spatial feature extraction, patch and position
embedding, the resulting sequence of vectors are fed to standard transformer encoder layers.
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outputs can be written as:

Q ¼ Zl�1WQ; (4)

K ¼ Zl�1WK; (5)

V ¼ Zl�1WV ; (6)

SAðZlÞ ¼ softmax
QKTffiffiffiffi

D
p

� �
V; (7)

where WQ;WK;WV 2 RD�Dm are learnable matrices and SA
is the self-attention module. MSM can be seen as a type of
self-attention with M heads in parallel operation and a pro-
jection of their concatenated outputs:

MSMðZlÞ ¼ Concatð SAhðZlÞ; 8h 2 1::M½ �f gÞWO; (8)

where WO 2 RM�Dm�D is a re-projection matrix. Dm is typi-
cally set to D

M , so as to keep the number of parameters con-
stant with changingM.

3.3 Temporal Aggregation

After extracting both local and global spatial features associ-
ated with each frame using a transformer encoder, we intro-
duce an aggregation block to extract temporal features
before performing the ultimate classification. The aggrega-
tion function ensures that our transformer model can be
trained and applied to the spatial feature sets of each frame,
subsequently processing the temporal relations between
frames in each sample. Since facial movement during
micro-expressions is almost imperceptible, all frames from
a single video sample are rather similar one to another. Nev-
ertheless, it is still possible to identify reliably a number of
salient frames, such as the apex frame, that play a particu-
larly important role in the analysis of a micro-expression.
Therefore, we propose an LSTM architecture for temporal
aggregation.

Long Short-Term Memory (LSTM) [56] is a type of recur-
rent neural network with feedback connections, which over-
comes two well-known problems associated with RNNs: the
vanishing gradient problem, and the sensitivity to the varia-
tion of the temporal gap length between salient events in a
processed sequence. The elements of the input are the sets
of outputs from the transformer encoder for each frame.
The inputs are not concatenated, and the input sequence
length is thus dependent on the number of frames in each
ME video sample.

We used three LSTM layers in the aggregation block. The
computation details of each layer are:

t ¼ 1. . .F; l ¼ LT þ 1. . .LA;

ft ¼ sðWf � ½Zt�1
l ; Zt

l�1� þ bfÞ; (9)

it ¼ sðWi � ½Zt�1
l ; Zt

l�1� þ biÞ; (10)

ot ¼ sðWo � ½Zt�1
l ; Zt

l�1� þ boÞ; (11)

C0
t ¼ tanhðWC � ½Zt�1

l ; Zt
l�1� þ bCÞ; (12)

Ct ¼ ft � Ct�1 þ it � C0
t; (13)

Zt
l ¼ ot � tanhðCtÞ; (14)

where F is the number of chosen frames in each video sam-
ple, LA is the total number of layers in both the transformer
encoder and the LSTM aggregator. Zt

l denotes the outputs
of the layer l after t frames have been processed. After all
frames are processed in this manner, the result is a single
feature set describing the entire micro-expression video
sample. Finally, these features are fed into an MLP which is
used for the ultimate MER classification. The details of how
previous output join the latter training are presented in
Fig. 7. We also design a comparative experiment to demon-
strate the effectiveness of the LSTM aggregator, the details
of which are described in the Section 4.3.2.

3.4 Network Optimization

Following the aggregation block, our network contains two
fully connected layers which facilitate the final classification
achieved using the SoftMax activation function. Cross
Entropy loss is used as the objective function for training:

L ¼ 1

N

X
i

Li ¼ � 1

N

X
i

XC
c¼1

yiclog ðpicÞ; (15)

where N is the number of the ME video samples and C the
number of emotion classes. The value of yic is 1 when the true
class of sample i is equal to c and 0 otherwise. Similarly, pic is
the predicted probability that sample i belongs to class c.

When using gradient descent to optimize the objective
function during network training, as the parameter set gets
closer to its optimum, the learning rate should be reduced.
Herein we achieve this using cosine annealing [57], i.e., using
the the cosine function to modulate the learning rate which
initially decreases slowly, and then rather rapidly before sta-
bilizing again. This learning rate adjustment is particularly
important in the context of the problem at hand, considering
that the number of available micro-expression video samples
is not large even in the largest corpora, readily learning to
overfitting if due care is not taken.

Fig. 6. Detailed structure of a transformer encoder layer. The output of
frame t processed by spatial encoder is Zt

LT
.
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4 EXPERIMENTS AND EVALUATION

In this section we describe the empirical experiments used
to evaluate the proposed method. We begin with a descrip-
tion of the data sets used, follow up with details on the data
pre-processing performed, relevant implementation details,
and evaluation metrics, and conclude with a report of the
results and a discussion of the findings.

4.1 Databases

Following the best practices in the field, for our evaluation
we adopt the use of three large data sets, namely the Spon-
taneous Micro-Expression Corpus (SMIC) [34], the Chinese
Academy of Sciences Micro-Expression II data set (CASME
II) [35], and the Spontaneous Actions and Micro-Movement
database (SAMM) [36], thus ensuring sufficient diversity of
data, evaluation scale, and ready and fair comparison with
other methods in the literature. All video samples in these
databases capture spontaneously exhibited, rather than
acted micro-expressions (see Zhang and Arandjelovi�c [5]
for discussion), which is important for establishing the real-
world applicability of findings.

4.1.1 SMIC

The Spontaneous Micro-Expression Corpus (SMIC) is the
earliest published spontaneous micro-expression database
[34]. It comprises three distinct parts captured by cameras
of different types, namely a conventional visual camera
(VIS), a near-infrared camera (NIR) and a high-speed cam-
era (HS). These subsets are designed to study micro-expres-
sion analysis tasks in various application scenarios. To
achieve uniformity with the other two corpora, namely
CASME-II and SAMM which are described next, which
only contain high-speed camera videos, it is the HS subset
from SMIC that we make use of herein. The SMIC-HS con-
tains 164 video sequences (samples) from 16 subjects of 3
ethnicities. Using two human labellers, these videos are cat-
egorized as corresponding to either negative (70), positive
(51), or surprised (43) expression, and both raw and
cropped frames are provided.

4.1.2 CASME II

The Chinese Academy of Sciences Micro-Expression II
(CASME II) data set contains 247 micro-expression video
samples from 26 Chinese participants. The full videos have

the resolution of 640� 480 pixels. Cropped facial frames in
280� 340 pixel resolution (higher than both CASME and
SMIC-HS), extracted using the same face registration and
alignment method as for SMIC, are also provided. The
micro-expression samples in CASME II are labelled by 2
coders to 5 classes, namely Happiness (33), Disgust (60),
Surprise (25), Repression (27), and Others (102).

4.1.3 SAMM

The Spontaneous Actions and Micro-Movement (SAMM)
database is the newest MER corpus. The 159 micro-expres-
sion short videos in the corpus were collected using 32 par-
ticipants of 13 ethnicities, with an even gender distribution
(16 male and 16 female), at 200 fps and the resolution of
2040� 1088 pixels, with the face region size being approxi-
mately 400� 400 pixels. The samples are assigned to one of
8 emotion classes, namely Anger (57), Happiness (26), Other
(26), Surprise (15), Contempt (12), Disgust (9), Fear (8) and
Sadness (6).

4.2 Data Pre-Processing

4.2.1 Face Cropping

As noted in the previous section, cropped face images are
explicitly provided in both SMIC-HS and CASME II data
sets, with the same registration method used in both; no
cropped faces are provided as part of SAMM. In order to
maintain data consistency across different databases, in our
experiments we employ a different face extraction approach.
In particular, we utilize the Ensemble of Regression Trees
(ERT) [58] algorithm implemented in DLib [59] to localize
salient facial loci (68 of them) in a uniformmanner regardless
of which data set a specific video sample came from.

In the case of SMIC-HS and CASME II videos, the origi-
nal authors’ face extraction process consists of facial land-
marks detection in the first frame of a micro-expression clip
and then the detected face being registered to the model
face using a LWM transformation. Motivated by the short
duration of MEs, the faces in all remaining frames of the
video sample are registered using the same matrix.

However, in this paper we employ an alternative strat-
egy. The primary reason lies in the need for sufficient and
representative data diversity, which is particularly impor-
tant in deep learning. In particular, the original face extrac-
tion method just described, often results in the close
resemblance of samples which increases the risk of model

Fig. 7. The repeating module in an LSTM aggregator layer.
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overfitting. Therefore, herein we instead simply use a non-
reflective 2D euclidean transformation, i.e., one comprising
only rotation and translation. By doing so, at the same time
we ensure the correct alignment of salient facial points and
maintain information containing facial contour variability.

Furthermore, unlike the authors of SMIC-HS and
CASME II, we do not perform facial landmark detection in
the first frame of a micro-expression sample, but rather in
the apex, thereby increasing the registration accuracy of the
most informative parts of the video. As shown in Fig. 8,
points 27–30 can be used to determine the centre line of the
nose that can be considered as the vertical symmetry line of
the entire face area. Point 30 is set as the centre point, and
the square size s (in pixels) is computed by adding the verti-
cal distance from the centre point of the eyebrows (19) to the
lowest point of the chin (8), yapex½8� � yapex½19�, to the height of
chin, yapex½8� � yapex½57�, so that nearly the entire face is
included in the cropped image:

s ¼ ðyapex½8� � yapex½19�Þ þ ðyapex½8� � yapex½57�Þ: (16)

4.2.2 Temporal Interpolation

Considering the short duration of micro-expressions, even
when samples are acquired using high-speed cameras, in
some instances only a small number (cc. 10) of frames is avail-
able. In an attempt to extract accurate temporal information,
we also apply frame interpolation from raw videos, effec-
tively synthetically augmenting data. In previous work, the
Temporal Interpolation Model (TIM) relies on a path graph
to characterize the structure of a sequence of frames, popu-
larly used in several handcrafted feature based methods [9],
[13], [60], whereas Liu et al. [10] use simple linear interpola-
tion. Herein we propose a novel approach to interpolation so
that its result is smoother in terms of optical flow, it being the
nexus of our entire MER methodology. Most existing optical
flow based methods produce artifacts on motion boundaries
by estimating bidirectional optical flows, scaling and revers-
ing them to approximate intermediate flows. We adopt the
Real-time Intermediate Flow Estimation (RIFE) method [61],
which uses an end-to-end trainable neural network, IFNet,
which speedily and directly estimates the intermediate flows.

Original RIFE interpolates one frame between two given
consecutive frames, so we apply it recursively to interpolate
multiple intermediate frames. Specifically, given any two

consecutive input frames I0; I1, we apply RIFE once to get
intermediate frame Î0:5 at t ¼ 0:5. We then apply RIFE to
interpolate between I0 and Î0:5 to get Î0:25, and so on. In our
experiment, we prioritize interpolation in the temporal vicin-
ity of the apex frame. The interpolated queue can be
expressed as fÎa�0:5; Îaþ0:5; Îa�1:5; Îaþ1:5; . . . ; Îoþ0:5 or Îf�0:5g,
where a, o and f are frame indices of the apex, onset, and off-
set frames respectively. Recall that the apex frames are speci-
fied explicitly in CASME II and SAMM, and for SMIC-HS we
choose the middle frame of each sample video as the apex. If
the number of interpolation frames is lower than the reference
count (the average number of frames in this period across the
database), we use the same method on the updated frame
sequence iteratively to generate further intermediate frames.

4.3 Experimental Settings

4.3.1 Implementation Details

In the spatial feature extraction procedure, we employed base
ViT blocks, with 12 Encoder layers, hidden size of 768, MLP
size of 3072, and 12 heads. For initialization,we use the official
ViT-B/16model [24] pre-trained on ImageNet [62]. We resize
our input images to 384� 384 pixels and split each image into
patches with 16� 16 pixels, so that the number of patches is
24� 24. 768-dimensional vectors are passed though all trans-
former encoder layers. For temporal aggregation, we select 11
frames (apex, and five preceding and succeeding it) per sam-
ple as inputs for the mean aggregator and LSTM aggregator.
We have tried other options with different number of frame,
but it didn’t work any better. We only use long-term optical
flow in experiments, as motivated by the arguments dis-
cussed in Section 3.1. For learning parameters, the initial
learning rate and weight decay are set to be 1e-3 and 1e-4,
respectively. The momentum for Stochastic Gradient Decent
(SGD) is set to 0.9, with the batch size 4 for all experiments.
All the experimentswere conductedwith PyTorch.

4.3.2 Mean Versus LSTM Aggregator

We compare our LSTM aggregator with an alternative
which uses the simple mean operator for temporal aggrega-
tion. After each frame is processed by spatial encoder, the
corresponding output is used in the computation by the
mean aggregation layer (layer LT þ 1):

Zt
LTþ1 ¼

t� 1

t
Zt�1
LTþ1 þ

1

t
Zt
LT

; t ¼ 1. . .F; (17)

In a manner similar to that described previously in the con-
text of the LSTM Aggregator, outputs of each frame from
our transformer encoder are taken as inputs to the temporal
feature extraction module. Compared to the mean operator,
LSTM has the advantage of larger expressive capability,
resulting in different extracted relationships between differ-
ent frames. Within the specific context of our work, this
means that its ability to distinguish between emotions is
also different, with LSTM expected to perform better.

4.3.3 Evaluation Metrics

Following previous work and the Micro-Expressions Grand
Challenges (MEGCs), we conducted experiments on SMIC-
HS, CASME II, and SAMM, evaluating the classification

Fig. 8. The 68 facial landmarks used by our method, shown for the onset
(green) and the apex frame (red).

1980 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 13, NO. 4, OCTOBER-DECEMBER 2022

Authorized licensed use limited to: Korea University. Downloaded on December 22,2022 at 06:04:29 UTC from IEEE Xplore.  Restrictions apply. 



performance using the corresponding original emotion clas-
ses, as well as the composite corpus formed using all three
data sets and relabelled using three classes as proposed in
MEGC 2019 [63]. All results are reported using LOSO cross-
validation. Evaluation is repeated multiple times by holding
out test samples of each subject group while the remaining
samples are used for training. In this way we best mimic
real-world situations and in particular assess the robustness
to variability in ethnicity, gender, emotional sensitivity, etc.

4.3.3.1 Sole Database Evaluation (SDE). In the first
part of our empirical evaluation, experiments are conducted
on threedatabases individually, using the corresponding origi-
nal emotion labels, excepting the very rare (and thus underrep-
resented) classes in CASME II and SAMM. SMIC-HS uses 3
class labels whereas the other two sets both use 5.We use accu-
racy andmacro F1-score to assess the recognition performance.

4.3.3.2 Composite Database Evaluation (CDE). In
the second part of our empirical evaluation, experiments
are conducted on the composite database with 3 emotion
classes (negative, positive, and surprise). The composite
database, that is the database obtained by merging SMIC,
CASME II, and SAMM contains the total of 68 subjects, 16
from SMIC, 24 from CASME II and 28 from SAMM. LOSO
cross-validation is applied on each database separately and
together on the composite database. Unweighted F1-score
(UF1), also known as the macro F1-score and Unweighted
Average Recall (UAR) are used to assess performance:

UF1 ¼ macro F1� score; (18)

UAR ¼
PC

c¼1

PS

i¼1
TPi;c

Nc

C
; (19)

where Nc is the total number of samples of class c across all
subjects.

4.4 Results and Discussion

We compare the performance of the proposed approach
with baseline handcrafted feature extraction methods and
the most prominent recent deep learning based methods on
the widely used micro-expression databases, SMIC-HS,
CASME II, and SAMM, described in the previous section,
both in the SDE and the CDE settings. To ensure uniformity
and fairness of the comparison, the SDE results for all meth-
ods were obtained in identical conditions, i.e., for the identi-
cal number of samples, the number of labels (classes), and
using the same cross-validation approach. The details of the
performance of our SLSTT on different emotion categories
are shown in Fig. 9.

As can be readily seen in Table 1 which presents a com-
prehensive overview of our experimental results in the SDE
setting, the method proposed in the present paper performs
best (n.b. shown in bold) in all but one testing scenario, in
which it is second best (n.b. second best performance is
denoted by square brackets), trailing marginally behind the
method introduced by Sun et al. [69]. What is more, in most
cases ourmethod outperforms rivals by a significantmargin.

Moving next to the results of our experiments in the CDE
setting, these are summarized in Table 2. It can be readily
seen that our method’s performance is again shown to be
excellent. In particular, in most cases our method again
comes out either at the top or second best (as before the for-
mer being shown in bold and the latter denoted by square
brackets enclosure). The only existing method in the litera-
ture which remains competitive against ours is that of Lei
et al. [20]. To elaborate in further detail, our approach
achieved the best results both in terms of UF1 and UAR on

Fig. 9. Confusion matrices corresponding to each of our experiments. Only one is shown for SMIC-HS because the SDE and the CDE are identical
when this database is used alone.
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CASME II, and on UF1 on the full composite database, and
second best on UAR on the composite database and on UF1
on SMIC-HS. The performance of all methods on CASME II
is consistently higher than when applied on other data sets,
which suggests that the challenge of MER is increased with
ethnic diversity of participants – this should be born in
mind in future research and any comparative analysis. It is
insightful to observe that in contrast with the results in the
SDE setting already discussed (see Table 1), our method
does not come out as dominant in the context of CDE. This
suggests an important conclusion, namely that our method
is particularly capable of nuanced learning over finer
grained classes and that its superiority is less able to come

through in a simpler setting when only 3 emotional classes
as used.

Taking into account the results from both the sole and the
composite database experiments, it is useful to observe that
when only short-range patterns are utilized, convolutional
neural network approaches do not outperform methods
based on handcrafted feature. It is the inclusion of long-
range spatial learning that is key, as shown by the marked
improvement in performance of the corresponding meth-
ods. Yet, the proposed method’s exceeds even their perfor-
mance, owing to its use of a multi-head self-attention
mechanism, thus demonstrating its importance in MER.
The superiority of our short- and long-range relation based

TABLE 1
SDE Results Comparison with LOSO on SMIC-HS (3 Classes), CASME II (5 Classes) and SAMM (5 Classes)

SMIC-HS CASME II SAMM

Acc(%) F1 Acc(%) F1 Acc(%) F1

Handcrafted
LBP-TOP* 53.66 0.538 46.46 0.424 – –
LBP-SIP* 44.51 0.449 46.56 0.448 – –
STLBP-IP [66] (2015) 57.93 – 59.51 – – –
STCLQP [64] (2015) 64.02 0.638 58.39 0.584 – –
Hierarchical STLBP-IP [67] (2018) 60.37 0.613 – – – –
HIGO+Mag [9] (2018) 68.29 – 67.21 – – –

Deep Learning
AlexNet** 59.76 0.601 62.96 0.668 52.94 0.426
DSSN [65] (2019) 63.41 0.646 70.78 0.730 57.35 0.464
AU-GACN [18] (2020) – – 49.20 0.273 48.90 0.310
MER-GCN [16] (2020) – – 42.71 – – –
Micro-attention [68] (2020) 49.40 0.496 65.90 0.539 48.50 0.402
Dynamic [69] (2020) 76.06 0.710 72.61 0.670 – –
GEME [70] (2021) 64.63 0.616 [75.20] [0.735] 55.88 0.454

SLSTT-Mean (Ours) 73.17 [0.719] 73.79 0.723 [66.42] [0.547]
SLSTT-LSTM (Ours) [75.00] 0.740 75.81 0.753 72.39 0.640

Best performances are shown in bold, second best by square brackets enclosure. (* Reported by Huang et al. [64], ** Reported by Khor et al. [65]).

TABLE 2
CDE Results Comparison with LOSO on SMIC-HS, CASME II, SAMM and Composite Database (3 Classes)

Composite SMIC-HS CASME II SAMM

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

Handcrafted
LBP-TOP* 0.588 0.579 0.200 0.528 0.703 0.743 0.395 0.410
Bi-WOOF* 0.630 0.623 0.573 0.583 0.781 0.803 0.521 0.514

Deep learning
ResNet18** 0.589 0.563 0.461 0.433 0.625 0.614 0.476 0.436
DenseNet121** 0.425 0.341 0.460 0.333 0.291 0.352 0.565 0.337
Inception V3** 0.516 0.504 0.411 0.401 0.589 0.562 0.414 0.404
WideResNet28-2** 0.505 0.513 0.410 0.401 0.559 0.569 0.410 0.404
OFF-ApexNet* [32] (2019) 0.720 0.710 0.682 0.670 0.876 0.868 0.541 0.539
CapsuleNet [72] (2019) 0.652 0.651 0.582 0.588 0.707 0.701 0.621 0.599
Dual-Inception [73] (2019) 0.732 0.728 0.665 0.673 0.862 0.856 0.587 0.566
STSTNet [41] (2019) 0.735 0.761 0.680 0.701 0.838 0.869 0.659 0.681
EMR [42] (2019) 0.789 0.782 0.746 0.753 0.829 0.821 0.775 [0.715]
ATNet [40] (2019) 0.631 0.613 0.553 0.543 0.798 0.775 0.496 0.482
RCN [71] (2020) 0.705 0.716 0.598 0.599 0.809 0.856 0.677 0.698
AUGCN+AUFsuion [20] (2021) [0.791] 0.793 0.719 [0.722] [0.880] [0.871] [0.775] 0.789

SLSTT-Mean (Ours) 0.788 0.767 0.719 0.699 0.844 0.830 0.625 0.566
SLSTT-LSTM (Ours) 0.816 [0.790] [0.740] 0.720 0.901 0.885 0.715 0.643

Best performances are shown in bold, second best by square brackets enclosure. (*Reported by See et al. [63], **Reported by Xia et al. [71]).
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spatiotemporal transformer is further corroborated by the
results shown in the latest two rows in both Tables 1 and 2
which summarize our comparison of the proposed LSTM
aggregator with the simpler mean operator aggregator.

In CASME II, distinguishing whether a micro-expression
is Disgust or Others is inherently difficult because the data-
base contains multiple inconsistently labelled samples with
only AU4 activated – some of them are labelled as Others,
some as Disgust. It is also worth noting that in SAMM,
some AU labels (‘AU12 or 14’) for the Contempt class were
not manually verified, which also causes confusion with
the Happiness class (mostly with AU12 labelled). In part,
these labelling issues emerge from the fact that the mapping
between facial action unit activations and emotions (as
understood by psychologists) is not a bijection. It is also the
case that imperfect information is made use of because only
visual data is used. Hence, it should be understood that the
theoretical highest accuracy of automated micro-expression
recognition on the MER corpora currently used for research
purposes is not 100%. The micro-expression databases con-
taining multi-modal signals [74], [75], which have begun
emerging recently, seem promising in overcoming some of
the limitations of the existing corpora, and we intend to
make use of them in our future work.

5 CONCLUSION

In this paper, we proposed a novel transformer based spa-
tio-temporal deep learning framework for micro-expression
recognition, which is the first deep learning work in the
field entirely void of convolutional neural network use. In
our framework both short- and long-term relations between
pixels in spatial and temporal directions of the sample vid-
eos can be learned. We use transformer encoder layers with
multi-head self-attention mechanism to learn spatial rela-
tions from visualized long-term optical flow frames and
design a temporal aggregation block for temporal relations.
Extensive experimental results using three large MER data-
bases, both in the context of sole database evaluation and
composite database evaluation settings and the Leave One
Subject Out cross validation protocol, consistently demon-
strate that our approach is effective and outperforms the
current state of the art. These findings strongly motivate fur-
ther research on the use of transformer based architectures
rather than convolutional neural networks in micro-expres-
sion analysis, and we hope that our theoretical contributions
will help direct such future efforts.
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