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ABSTRACT

In the genome biology research, regulatory genome modeling is an important topic
for many regulatory downstream tasks, such as promoter classification, transaction
factor binding sites prediction. The core problem is to model how regulatory ele-
ments interact with each other and its variability across different cell types. How-
ever, current deep learning methods often focus on modeling genome sequences
of a fixed set of cell types and do not account for the interaction between multiple
regulatory elements, making them only perform well on the cell types in the train-
ing set and lack the generalizability required in biological applications. In this
work, we propose a simple yet effective approach for pre-training genome data
in a multi-modal and self-supervised manner, which we call GeneBERT. Specif-
ically, we simultaneously take the 1d sequence of genome data and a 2d matrix
of (transcription factors x regions) as the input, where three pre-training tasks
are proposed to improve the robustness and generalizability of our model. We
pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
We evaluate our GeneBERT on regulatory downstream tasks across different cell
types, including promoter classification, transaction factor binding sites predic-
tion, disease risk estimation, and splicing sites prediction. Extensive experiments
demonstrate the effectiveness of multi-modal and self-supervised pre-training for
large-scale regulatory genomics data.

1 INTRODUCTION

In the gene biology research, many important regulatory problems including promoter (Li et al.,
2000) classification and transaction factor binding sites (Stewart et al., 2012)) prediction requires
a well-designed approach for modeling regulatory genome sequences. As a multi-cellular organ-
ism, the human body is formed by different cell types, with each has its own gene expression pat-
terns (Schena et al., [1995; |Ross et al., 2000). Therefore, modeling regulatory genome, especially
across different cell types, is crucial for both the understanding of this fundamental biological pro-
cess and the development of RNA-level therapeutic intervention of a vast among of diseases. The
main challenge is how to model the interaction between regulatory elements and its variability across
different cell types.

In recent years, some works (Chen et al.,[2016; Kelley et al.,[2016; Romero et al.| 2017} |Qiu et al.,
2018; Torada et al., [2019} |Chen et al.|, [2020a; |Avsec et al., 2021; Ji et al.,|2021)) have been proposed
to apply deep learning architectures on modeling the genome data. For example, Enformer (Avsec
et al. 2021)) combines dilated CNN and transformer architecture as well as multi-head output to
predict gene expression and epigenomic marks, and gain some performance improvements against
traditional methods. Most of these models are based on a supervised learning paradigm, which
limits their abilities to learn the general interaction representations between different regulatory
elements. As a result, each model is only useful for some specific downstream tasks. More recently,
DNABERT (Ji et al. [2021)) is introduced to formulate the whole DNA sequence as a sentence of
nucleotide k-mers and utilize BERT to model the sequence generatively. In this way, the interactions
between different regulatory elements could be well captured, like the language modeling approach
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in natural language processing (NLP) to capture the co-occur information between different words,
and could be employed for modeling several related downstream tasks. However, DNABERT only
performs well on the cell types in the training set, and generalizes poorly to unseen cell types. This
is mainly because the whole DNA sequence is common for different cells, and pre-training on such
data cannot well reflect various interaction patterns across different cell types.

Integration of genome data modalities across different cell types could help to build a more holistic
model of gene expression regulation and benefit downstream applications such as mutation impact
evaluation and disease risk prediction, as well as promote our understanding of the cell-type-specific
regulatory programs and various development processes and disease etiology. Inspired by this idea,
in this work, we present a simple yet effective method called GeneBERT, for pre-training large-scale
genome data in a multi-modal and self-supervised manner. Specifically, we simultaneously take the
1D modality (i.e. sequence) and a 2D modality (i.e. regulatory region) of genome data as the input,
where three pre-training tasks are proposed to improve the robustness and generalizability of our
model. 1) masked genome modeling: we randomly mask some parts of the input k-mers with a
special token (i.e., [MASK]), and the model is trained to predict the masked k-mers. 2) next genome
segment prediction: we train the model using the embedding [CLS] to classify whether a pair of
given sequences are two consecutive sequences in a cell. 3) sequence-region matching: a sequence-
region matching mechanism is proposed to capture the multi-modal alignment between sequence
and regulatory region of genome data.

We pre-train the GeneBERT on the ATAC-seq dataset (Domcke et al., [2020) with 17 million gene
sequences. Furthermore, we conduct extensive experiments to evaluate our GeneBERT on vari-
ous downstream tasks, including promoter prediction, transaction factor binding sites prediction,
gene mutation localization, and personalized diseases prediction. Comprehensive ablation studies
demonstrate the effectiveness of multi-modal self-supervised pre-training for large-scale genome
data across different cell types.

The main contributions of this work lie in the proposal of a simple yet effective method named
GeneBERT, for large-scale genome data pre-training in a multi-modal and self-supervised manner.
To the best of our knowledge, we are the first to incorporate different genome data modalities across
various cell types into the pre-training for large-scale genome data, to tackle the regulatory genome
modeling problem. Except for meaningful biological improvements, our model makes an important
contribution to the machine learning community, by introducing a novel multi-modality construc-
tion. Different from existing multi-modal learning tasks, such as visual question answering, image
caption, and image-text retrieval, the ‘visual’ modality in our work is constructed based on the reg-
ulatory property of the ‘language’ sequential units. This idea brings some inspiration to building a
new ‘visual’ modality, based on text matching, part-of-speech tagging, and named entity recognition
etc., for the study of NLP.

2 RELATED WORK

Uni-modal language pre-training. Self-supervised pre-training models such as GPT (Radford
et al., [2018), BERT (Devlin et al., 2018), RoBERTa (Liu et al., |2019), and ERNIE (Sun et al.,
2019) have led to dramatic improvement on a variety of natural language processing tasks in the
past few years, significantly surpassing the traditional context-independent language model such
as Word2Vec. Obviously, BERT (Devlin et al., 2018) uses the masked language model (MLM)
and next sentence prediction (NSP) for pre-training, which represent the dynamic vector of words
according to the context. RoBERTa (Liu et al., [2019) uses dynamic MLM and discards NSP to
train the model with a long time. ERNIE (Sun et al., 2019) masks entities and phrases to learn
more context relations. These self-supervised pre-training models are capable of performing natural
language processing tasks more effectively by improving MLM.

Multi-modal pre-training. Multi-modal pre-training has recently addressed researchers’ atten-
tion for learning meaningful representations. Typically, Previous methods (Radford et al.| 2021}
Huo et al 2021)) learn visual representations from text paired with images in unsupervised, self-
supervised, weakly supervised, and supervised ways. Since language and vision can share a sim-
ilar semantic meaning, CLIP (Radford et al.l [2021) is a commonly-used neural network trained
on a variety of (image, text) pairs for learning transferable visual representations from natural lan-
guage supervision. WenLan (Huo et al., [2021)) applies a cross-modal contrastive learning frame-



work called BriVL for image-text pre-training. However, in this work, we leverage the multi-modal
self-supervised pre-training on the genome data to improve the robustness and generalizability of
pre-trained models used for data-scarce scenarios.

Genome data pre-training. Transformer models have been recently established to better under-
stand the genotype-phenotype relationships (Avsec et al.,[2021;J1 et al.,2021). DNABERT used the
human genome to pre-train a BERT-based model, trying to decipher the regulatory code related to
gene expression (Ji et al} [2021). In order to adapt the DNA scenario, sequences were split into 5
to 510 base-pair long and tokenized to 3- to 6-mer representations. The model was then pre-trained
using those k-mers by predicting around 15% randomly masked regions of the sequence. After the
pre-training, the model was fine-tuned on three downstream tasks related to gene regulation: pre-
diction of promoters, transcription factor binding sites (TFBSs), and splice sites. Furthermore, by
analyzing the attention maps, DNABERT could visualize the important regions contributing to the
model decision, which improved the interpretability of the model.

3 METHOD: GENEBERT

In this section, we propose a simple yet effective approach for pre-training genome data in a multi-
modal and self-supervised manner, as illustrated in Figure[T} Specifically, we introduce two main ob-
jectives for sequence pre-training, including Masked Genome Modeling (MGM) and Next Genome-
Segment Prediction (NGSP). Next, we extract features of the region for region pre-training. Fi-
nally, we present the Sequence-Region Matching mechanism to explicitly align features of the se-
quence and region in the input genome data in a contrastive self-supervised manner. Therefore,
our GeneBERT consists of three main components: sequence pre-training, region pre-training, and
sequence-region matching.
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Figure 1: The overall framework of our proposed GeneBERT model.

3.1 INPUT DATA

We use potential regulatory elements mapped with ATAC-seq which measures the chromatin ac-
cessibility across the genome. The regions with open accessibility could be bound by transcription
factors, which together with regulatory elements and RNA polymerase determines the expression
level. In one cell type, the list of all regulatory elements can be viewed as a set of non-overlapped
sub-regions across the genome. Each region or regulatory element can be viewed as a string like
“AATTCCT...” consist of 4 elements: [A, T, C, G]. The binding site of different transcription factors
has different sequence patterns, some of which have been determined using experimental methods
and have been modeled using probabilistic models like position weight matrix (PWM). Using PWM,
one can get the predicted affinity of a sequence segment to a given transcription factor. Each regu-
latory region can then be associated with a ‘transcription factor binding vector” which contains the



in silico prediction of their affinity to a fixed number of transcription factors. By scanning through a
regulatory element sequence with PWM of multiple transcription factors, we can get a transcription
factor binding affinity vector for that regulatory element.

When the collection of transcription factor binding models is comprehensive and precise enough,
we can get a good representation of regulatory potential for a given sequence. In different cell types,
the accessibility of regulatory elements is different. Some regulatory elements are shared across
different cell types while some are more specific to one cell type. As a result, in a local region of
the genome, the accessible transcription factor binding sites are determined by the combination of
accessible regulatory regions. This combinatorial interaction between regulatory regions and tran-
scription factors varies across different cell types such that precise control of expression in different
cell types is possible. To capture the combinatorial interaction and the implicit cell-type specific in-
formation, we then group 10 consecutive regulatory elements into one train sample by concatenating
their string (1D sequence) and stacking their binding vector into a 2D region, as shown in Figure [T}

3.2 SEQUENCE PRE-TRAINING

Similar to DNABERT, we take k-mer tokens as the sequence units. The k-mer refers to a sequence
with length k, i.e., for a sequence AGTCAG, the 3-mers are {AGT, GTC, TCA, CAG}, and the
4-mers are {AGTC, GTCA, TCAG}. Therefore for sequence pre-training, we input three types of
embeddings: 1) a k-mer embedding x* for each k-mer in a sequence; 2) a segment embedding
x® indicating which part of the sequence the k-mer is from; 3) a position embedding x? for the
position of the k-mer in the sequence. Then we sum up all three embeddings to obtain a contextual
representation e”,n € {1,2,..., N}, where N denotes the number of k-mers in the sequence. After
being fed into a BERT-based transformer ficq(:), those contextual embeddings become Eg, i.e. the
obtained representation for [CLS]. Inspired by BERT (Devlin et al., 2018)), we adopt two objectives
including Masked Genome Modeling (MGM) L, 4., and Next Genome Segment Prediction (NGSP)
Lygsp. For Ly,gm, we randomly mask some parts of the input k-mers with a special token (i.e.,
[MASK]), and the model is trained to predict the masked kmer. The objective is formulated as:

‘C'mgm = Inax P(K’maSk|K) (1)

where K and K, denote the unmasked and masked k-mers, respectively. As for L, 45, We train
the model using the embedding [CLS] to classify whether a pair of given sequences are consecutive
in a cell. The loss function of L,,4s), is calcualted as:

Lygsp = CrossEntropy(P([CLS]),y) 2)

where P([CLS]) and y represent the predicted probability and target for classification, respectively.

3.3 REGION PRE-TRAINING

For the region features in the pre-training, we consider a strong backbone (i.e. Swin (Liu et al.,
2021)) transformer ﬂ as the region encoder f4(-) to extract representations Ei.,. Specifically, we
apply the Swin transformer pre-trained on ImageNet to the region input directly to generate Eie,.
During the pre-training, we unfreeze the parameters of the Swin transformer and update them for
learning better regional representations. In the pre-training setting, each region input corresponds to
each sequence such that we can capture the multi-modal alignment between sequence and region of
genome data.

3.4 SEQUENCE-REGION MATCHING

In order to learn the alignments between sequence and region of genome data, we propose a
sequence-region matching mechanism based on sequence embeddings Ey.q and region embeddings
E,.,. Firstly, we calculate the similarity (i.e. inner product) between each pair of ‘linguistic’ em-
beddings Ezeq and ‘visual’ embeddings Eﬁeg in a batch of size b, where ¢ € 1,2, ...,b. Then, those
similarities are jointly learned for alignments between the whole sequence and each region in a
contrastive learning manner, where we maximize the similarity of the sequential and regional em-
beddings of the b correct pairs in the batch while minimizing the similarity of the embeddings of

"For other transformer strcutures, we explore them in the ablation study.



Algorithm 1 GeneBERT multi-modal pre-training algorithm

Input: Sequence transformer fieq(-), Region transformer freq(-)
1D-data: k-mer embedding x*, segment embedding x*, position embedding x”
2D-data: Region matrix X
Initialize the parameters fieq("), freg(+) with pre-trained weights
for each iteration step do

# Sequence Pre-training

Feed x*, x*, xP into fseq(+) to generate Eqq

calculate L,y,gm and Ly, g, in Eq.[TJand P

# Region Pre-training
o: Feed 2D region X into fie.(-) to generate Ere,
10: # Sequence-Region Matching
11: Apply embeddings Eqq, Ey, to calculate the loss in Eq.
12: Compute the total loss in Eq. 4]
13: Update the parameters of feeq(:), freg(-)

Olltpllt: fseq () 5 freg(')

A A S e

the b(b — 1) false pairs. Specifically, an info-NCE like loss defined as follows is applied over these
similarities scores for optimization:

b . .
log Zi:l E:eq ’ Ezeg
b b ; j
Zi:l Zj:l Egeq ’ Egeg

In this way, alignments between the whole sequence and each region are learned via our GeneBERT
in the pre-training process.

Lsr'm = - (3)

Combining the above three losses together, we obtain the overall objective function for GeneBERT:

L= »Cmgm + »Cngsp + A £srm €]

where we vary A in [0.01, 1] to perform the parameter study for A, and observe that the performance
of our model is stable when A lies in the region of [0.5, 1]. Therefore in our experiments, we directly
set A = 0.5. The overall algorithm is summarized in Algorithm [I]

4 EXPERIMENTS

4.1 PRE-TRAINING DATA & SETTINGS

For pre-training data, we process public human fetal cerebrum single-cell chromatin accessibility
data in the Descartes database (Domcke et al., 2020) to generate pseudo-bulk accessibility tracks
for each cell type (Seurat cell clustering provided by the original paper). Specifically, we take the
provided “Peak Count Sparse Matrices” and summed up columns (cells) according to cell type defi-
nition, producing a regions X cell-types matrix. Then we binarize the matrix and use only non-zero
entries (accessible regions) for each cell type. The corresponding sequence for each region is then
retrieved from the HG19 human reference genome, a single representation of multiple genomes.
While the motif scanning for each region is either retrieved from the Descartes database or scanned
following the same approach using JASPAR 2018 (Khan et al., 2018)) vertebrate transcription fac-
tor binding site motifs. In total, we use 17 cell types and the union of all accessibility track in-
cludes 1,000,029 accessible regions across the genome, covering 504,657,456 base pairs. For the
1D modality, we group 10 consecutive accessible regions into one sample, which corresponds to a
(10 x number of TFs) matrix for the 2D modality. Following previous works (Ji et al.l [2021)), we
pre-train the model for 120k steps with a warm-up learning rate of 4e-4 and batch size of 2000. 15%
of k-mers in each sequence are masked in the first 100k steps and 20% for the last 20k steps.

4.2 DOWNSTREAM TASKS & RESULTS

Promoter Classification. Promoters are the elements responsible for regulating the initial transcrip-
tion of the gene, which is located near the transcription start site (TSS). As the promoters play an



important role in gene regulation, using machine learning methods to predict promoter sites accu-
rately is one of the most popular problems in bioinformatics. Here we first used the promoter core
dataset from (Ji et al., 2021}, which are the 70bp sequences centered around TSS. The promoter
core is the key part of the promoter flanking region which is sufficient to direct accurate initiation
of transcription (Oubounyt et al., |2019). Here we fine-tune our GeneBERT model to predict the
promoter core sequences and compared them with DNABERT. We report the experimental results
in Table[T} For a fair comparison with DNABERT, we reproduce the results of DNABERT by fine-
tuning the pre-trained models provided by the authors. During the reproduction process, we observe
that it is hard to get the same results reported in the original paper as their model is very sensitive
to the hyper-parameter settings. From the comparison results, we can see that our model can predict
promoter core more precisely with improved performance when compared to DNABERT. This is
due to the inclusion of regulatory genome information in our 2D pre-training data, which guides the
pre-training process to focus on those binding site motifs and their interactions with each other.

Table 1: Comparison results on promoter classification.
Method Precision Recall AUC

DNABERT 0.675 0.637 0.693
GeneBERT (ours) 0.805 0.803 0.894

Table 2: Comparison results on Transcription Factor Binding Sites classification.

Transcription Factor & Cell Line  Method Precision Recall AUC
CICFASS.CICEUTA  GOcRERT (our) 0908 0899 0983
CICFASSO.CICEUW  GolBERT o) 0925 0921 0983
CTCFAGUMO.CTCEUW  GLlBERT (ury 0907 0894 0983
CTCFAGUMMSOCTCEUW Gl BERT (ury 0929 0925 0987
CICEAGO09.CTICEUW  CLURERT ury 0931 0927 0987
CICEAGO93I9.CTCEUW  GOlCprT sy 0924 0919 0983
CICPAGIOSO3.CTCEUW  CuBERT o) 0934 0932 0981
CTCFAOAR.CTCEUW G lBERT (ury 0917 0913 0.982

DNABERT 0.250 0.500 0.540

CTCEBEQR)-CCTCEUW 5 eBERT (ours)  0.937  0.935 0.989

Transcription Factor Binding Sites (TFBS) Classification. Predicting TFBS is an important step
in studying gene regulation. Sequencing technologies like ChIP-seq can provide information on the
in vivo binding sequences, which improve the identification of gene regulatory regions. There are
several previous studies that tried to predict TFBSs using traditional machine learning (Hong & Yip,
2020) and deep learning methods (Alipanahi et al.| [2015). By incorporating the multi-modal pre-
training, the prediction of TFBSs can be further improved. Although we utilize the motif information
during the region pre-training, we do not provide any matching information to the model, which
avoids leaking information about the actual motif of a specific TF. Here we fine-tune our model
for predicting TFBSs from the ChIP-seq data, using 497 TF ChIP-seq uniform peak profiles from
ENCODE Consortium (Consortium et al.,[2012)). Note that the data in this task is different from that
reported in DNABERT, since they did not provide the data for this task. We reproduce the results of
DNABERT on this TFBS data with the same setting as our GeneBERT. We take the peak sequences
of each TF as the positive set and generated a corresponding negative set by randomly shuffling the
nucleotides in each positive sequence while preserving dinucleotide frequencies. Again, our model
can accurately predict the CTCF binding sites in all tested cell lines.

Disease Risks Estimation. GeneBERT could provide more interpretations of complex genetic dis-
eases. On the one hand, while the disease status and genomic mutations were available, by inte-
grating the 2D data, the relationships among regulatory regions of genes could be captured, which



allowed us to estimate the disease risk more accurately. As shown in Table [3] GeneBERT can pre-
cisely predict Hirschsprung Disease (HSCR), which is known as a genetic disorder with complex
patterns of inheritance. Particularly, our GeneBERT outperforms the baseline by a large margin in
terms of all metrics (Precision, Recall, AUC), which further demonstrates the effectiveness of our
approach in the treatment target sites and proceeded to the medical experimental validation.

Table 3: Comparison results on disease risks estimation.

Data Method Precision Recall AUC
DNABERT 0.265 0.500 0.500

HSCR-RET " GeheBERT (ours) 0770 0519  0.562
DNABERT 0.252 0.500 0.462

HSCR-RETLong . 'BERT (ours)  0.768  0.513  0.541

RNA-Splicing Sites Prediction. RNA splicing is important for post-transcription processing to
remove introns from pre-mRNA sequences and generate mature mRNA for protein translation. Pre-
viously, Dilated CNN models have been used to predict splice junction across the genome and
evaluate the impact of genomics variants on splicing sites (Jaganathan et al., [2019). In particular,
for each nucleotide in a given sequence for splicing site prediction, we follow the previous approach
and include a context sequence around the nucleotide, which could potentially capture the sequence
specificity features of RNA-binding proteins and splicing machinery. Since open chromatin regions
and splicing sites do not always overlap with each other, among all 548,000 splicing sites in the
GTEx pre-mRNA transcripts data, our pre-training sequence only fully covers the entire (in the
256nt context setting) sequence of 72,500 sites. The experimental results are reported in Table 4] In
total, 26.7% of nucleotides in context and splicing site sequence are included in the open chromatin
region that we use for pre-training. Following the same training/testing split scheme and classifica-
tion metric (Top-k Accuracy and PR-AUC) as in the SpliceAl study (Jaganathan et al., 2019), we
achieve comparable or better results in different context settings without an extremely long con-
text sequence. These results clearly demonstrate the generalizability of our GeneBERT pre-trained
representations. By integrating sequence binding features of RNA binding proteins, we are able to
further expand our model to enable cell-type specific splicing junction prediction in the future.

Table 4: Comparison results on Splicing datasets.

Data Method Top-k Accuracy PR-AUC

. dilated CNN 0.57 0.60
SpliceAl-80nt 5. BERT (ours) 0.83 0.89

. dilated CNN - -
SpliceAl-256nt GeneBERT (ours) 0.93 0.95

. dilated CNN 0.90 0.95
SpliceAI-400nt 5. BERT (ours) 0.95 0.98

. dilated CNN 0.93 0.97
SpliceAI-2k 5o/ CBERT (ours) 0.97 0.99

5 ABLATION STUDY

In this section, we perform extensive ablation studies on the effect of each module on the final
performance of our GeneBERT, the effectiveness of modeling different cell types, the effect of 2D
modality on pre-training, and the effect of 2D transformers on the final performance of our approach.
Unless specified, we conduct all ablation studies on the promoter classification task and report the
mean value of all results with 5 random seeds.

Effect of each loss. In order to explore the effect of each loss on the final performance of our
GeneBERT, we ablate each loss in our method and report the comparison results of promoter classi-
fication in Table[5] As can be seen, pre-training without three proposed losses achieves the worst re-
sults in terms of all metrics. This means that pre-training without any objectives causes embeddings
with insignificant genome information. Adding L, ¢, first boosts the performance by 0.659, 0.625,
0.672 for precision, recall, and AUC. By combining L., and L,,4sp,, we achieve the performance
gain of 0.028, 0.024, 0.032, which validates the rationality of L, 4., and L4, on modeling the
meaningful embeddings of genome sequences. In the meanwhile, adding L., to the final objective
further improves the results by 0.103, 0.142, and 0.169, in terms of all metrics. This further demon-
strates the effectiveness of our sequence-region matching loss in learning the alignments between



sequence and region of genome data. In this case, the sequence-region matching loss is helpful for
multi-modal self-supervised pre-training on large-scale genome data, which boosts the performance
of downstream tasks.

Table 5: Ablation study on each loss.
Lomgm Lngsp Lsrm Precision Recall AUC

X X 0.016 0.012  0.021
X 0.675 0.637  0.693
X 0.703 0.661  0.725
v 0.805 0.803 0.894

NN
SAx

Table 6: Exploration study on different cell/tissue types.

Protein Celltype  Tissue type Precision Recall AUC

AGO04449  Fibroblast Skin 0.907 0.894 0.983
AGO04450  Fibroblast Lung 0.929 0.925 0.987
AGO09309  Fibroblast Skin 0.931 0.927 0.987
AGO09319  Fibroblast Gingival 0.924 0.919 0.983
AG10803  Fibroblast Skin 0.934 0.932 0.981

AoAF Fibroblast Heart 0.917 0913 0.982
BE(2)-C  Neuroblast Brain 0.937 0.935 0.989

Generalization to different cell/tissue types. To validate the generalizability of our approach
to various cell or tissue types, we evaluate our GeneBERT on Transcription Factor Binding Sites
(TFBS) classification. Specifically, we choose different proteins from various cells or tissues in the
human body, such as skin, lung, heart, brain, etc. The experimental results of TFBS classification
on different cell/tissue types are reported in Table[6} In terms of modeling different cell/tissue types,
DNABERT (Ji et al.| 2021) performs poorly on the generalizability, as we reported in Table 2} En-
former|Avsec et al.| (2021)) only performs well on the gene expression prediction for the single cell.
From the results, we can observe that our GeneBERT achieves superior performance on various
cell types and tissue types in terms of all metrics, including precision, recall, and AUC. This indeed
shows the advantage of our GeneBERT on learning generalizable embeddings for different cell types
and tissue types in the human body. Particularly, we achieve the best performance on the brain tissue
and neuroblast cell, which might be caused by the pre-training data from the human brain.
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Figure 2: Visualization results of representations pre-trained by the uni-modal (left) and multi-modal
(right) manner. Different colors denotes the various cell types.

Effect of 2D modality on pre-training. In order to further evaluate how the 2D modality data affect
the quality of pre-training on large-scale genome data, we visualize the pre-trained representations
pre-trained by the uni-modal and multi-modal manner in Figure 2] Typically, we project the embed-
dings pre-trained from BERT onto 2 dimensions using tSNE tools, and we select randomly 10 cell
types in the pre-training data for visualization. We can observe that our GeneBERT pre-trained rep-
resentations form more separated clusters that are distributed more uniformly on the space in terms
of all cell types when compared to the pre-trained representations generated by the uni-modal model.
Furthermore, the representations pre-trained by our multi-modal self-supervised method have much
smaller distances inside each cluster of cell type. This further demonstrates the effectiveness of our
2D modality in improving the quality of pre-trained representations.



Effect of different transformer strcutures. In order to figure out why we choose the strong Swin
transformer to take the 2D modality data as input, we explore the effect of different 2D transformers
on the final performance of our GeneBERT. Specifically, we apply four commonly-used backbones
(ViT (Dosovitskiy et al.}|[2021)), T2T-ViT (Yuan et al.|[2021)), DeiT (Touvron et al.|[2020), Swin (Liu
et al.l 2021))) as the 2D transformer to extract the region features, and report the comparison results
in Table As can be seen, our GeneBERT with Swin-B-384 backbone achieves the best perfor-
mance in terms of all metrics (precision, recall, AUC). In the meanwhile, with the increase of input
size, the performance of our GeneBERT improves, which demonstrates the effectiveness of features
extraction of the 2D modality data in learning discriminative representations of large-scale genome
data. As the 2D transformer gets powerful, our GeneBERT achieves better results in terms of all
metrics on the promoter classification task. This further validates the importance of the 2D trans-
former in multi-modal self-supervised learning. In this case, we choose the Swin transformer as the
2D backbone since we achieve the best results with the Swin transformer.

Table 7: Exploration study on 2D transformers with different input sizes.

2D Transformer Input Size Precision Recall AUC

ViT-B-384 384 0.758 0.755 0.853

ViT-L-384 384 0.752 0.753  0.851
T2T-ViT-14 224 0.805 0.803 0.892
T2T-ViT-24 224 0.808 0.806  0.896
DeiT-S-224 224 0.788 0.795 0.873
DeiT-B-224 224 0.806 0.805 0.895
DeiT-B-384 384 0.809 0.808  0.897
Swin-T-224 224 0.805 0.803 0.894
Swin-S-224 224 0.813 0.811  0.905
Swin-B-224 224 0.822 0.823 0915
Swin-B-384 384 0.824 0.826 0.919

Effect of batch size. Batch size is always a significant hyper-parameter in the contrastive learning
literature. To explore how the batch size affects the final performance of our multi-modal self-
supervised pre-training, we vary the batch size from 16, 32, 64, 128, 256, and 512. The experi-
mental results are reported in Table |8} We can observe that with the increase of the batch size, our
GeneBERT achieves better performance due to the effectiveness of more negative samples in the
sequence-region matching loss. This demonstrates the importance of a larger batch size and more
negative samples on large-scale genome data pre-training, which complies with the conclusion of
vision tasks in (Chen et al., [2020b;c; |[He et al., [2020; |Chen et al., [2020d).

Table 8: Ablation study on the paramters, batch size and \.
Batch Size Precision Recall AUC | X  Precision Recall AUC

16 0.642 0.651 0.733 | 0.01 0.633 0.621 0.683
32 0.751 0.752  0.853 | 0.05 0.703 0.702 0.772
64 0.783 0.792 0.871 | 0.1 0.781 0.762  0.851
128 0.805 0.803 0.894 | 0.5 0.805 0.803 0.894
256 0.812 0.813 0906 | 1.0 0.802 0.801 0.892
512 0.815 0.817 0908 | 5.0 0.785 0.782  0.852

Effect of \. Furthermore, we explore the effect of A on the final performance of our GeneBERT.
Specifically, we vary A from 0.01, 0.05, 0.1, 0.5, 1.0 and 5.0, and report the comparison results
in Table Our GeneBERT achieves stable performance when A is set to 0.5 and 1. With the
decrease of \, the performance of our approach deteriorates in terms of all metrics, which validates
the importance of our sequence-region loss in our GeneBERT. To receive the stable performance of
multi-modal self-supervised pre-training, we set A = 0.5 in all experiments.

6 CONCLUSION

In this work, we present the GeneBERT, a multi-modal self-supervised framework for large-scale
genome data pre-training. Specifically, we leverage sequence pre-training, region pre-training, and
sequence-region matching together to improve the generalizability of our model across different cell
types for regulatory genome modeling. Extensive experiments on four main regulatory downstream
tasks demonstrate the effectiveness of our GeneBERT. Besides, comprehensive ablation studies have
been conducted to show the important role of multi-modal modeling.
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