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SUMMARY
Recent theoretical work has argued that in addition to the classical ventral (what) and dorsal (where/how) visual
streams, there is a third visual stream on the lateral surface of the brain specialized for processing social infor-
mation. Like visual representations in the ventral and dorsal streams, representations in the lateral stream are
thought to be hierarchically organized. However, no prior studies have comprehensively investigated the orga-
nization of naturalistic, social visual content in the lateral stream. To address this question, we curated a natu-
ralistic stimulus set of 250 3-s videos of twopeople engaged in everyday actions. Each clipwas richly annotated
for its low-level visual features, mid-level scene and object properties, visual social primitives (including the dis-
tance between people and the extent to which they were facing), and high-level information about social inter-
actions and affective content. Using a condition-rich fMRI experiment and a within-subject encoding model
approach, we found that low-level visual features are represented in early visual cortex (EVC) and middle tem-
poral (MT) area, mid-level visual social features in extrastriate body area (EBA) and lateral occipital complex
(LOC), andhigh-level social interaction informationalong the superior temporal sulcus (STS). Communicative in-
teractions, in particular, explained unique variance in regions of the STS after accounting for variance explained
by all other labeled features. Taken together, these results provide support for representationof increasingly ab-
stract social visual content—consistent with hierarchical organization—along the lateral visual stream and sug-
gest that recognizing communicative actions may be a key computational goal of the lateral visual pathway.
INTRODUCTION

The ability to recognize people performing all kinds of activities is

extremely important in our daily lives. One of the most common

and important types of actions we see are social actions be-

tween two or more people,1–3 like talking, hugging, or waving

goodbye. Prior research has shown that the sociality of actions

(i.e., the extent to which an action is directed at another person)

is an important organizing feature of actions in the human

brain,1–3 particularly in the lateral occipital cortex. Recent work

has also identified selective neural responses for dyadic social

interactions in nearby regions along the superior temporal sulcus

(STS) and homologous regions in the nonhuman primate

brain.4–6 This and related work have led to recent theoretical pro-

posals for a third visual pathway on the lateral surface (in addition

to the classic ventral and dorsal streams). The lateral visual

stream is thought to be specialized for recognizing agentic ac-

tion7 or dynamic social perception more generally.8

As is characteristic of hierarchical organization of the ventral vi-

sual stream,9 Pitcher andUngerleider8 argue that lateral pathway

representations are organized from low-level features in the

early visual cortex (EVC) to high-level features in theSTS.Howev-

er, this hierarchical organization and the specific features
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represented have not been comprehensively tested. In the cur-

rent study, we aim to understand how social actions are orga-

nized in the brain and test the hypothesis that their features are

extracted hierarchically along the lateral visual stream.

Recent work with simple stimuli has provided some evidence

of increasingly abstract social action representations along the

lateral surface. For instance, mid-level visual cues indicative of

social actions, such as whether two bodies are facing10,11 or

moving toward one another,12 are represented in the body-se-

lective extrastriate body area (EBA) on the lateral surface.

More anterior regions along the STS are selective for higher-level

social action information, including the presence and valence of

social interactions.4,6,13–15

Although these controlled studies have yielded important in-

sights into neural selectivity for social content, naturalistic stimuli

are critical for understanding human social perception due to the

dynamic nature and extended temporal contingencies of social

scenes.16,17 Further, in order to understand the organization of

a large region of the visual cortex that responds tomany different

visual and social features, it is important to broadly sample vari-

ance along many different dimensions, which is not possible to

do comprehensively using controlled stimuli. For this reason,

we opted for a condition-rich, naturalistic design.3
mber 4, 2023 ª 2023 The Authors. Published by Elsevier Inc. 5035
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LOW-LEVEL FEATURES
AlexNet-conv2 - 20 PCs extracted from        
    ImageNet trained AlexNet convolutional layer 2 
Motion energy - 3 PCs extracted from an 
   Adelson & Bergen (1985) motion energy model

SCENE & OBJECT FEATURES
indoor - experimenter rated
spatial expanse - Are the people acting in a near 
    space (e.g. close up manipulation of an object)  
    or a far space (e.g. kicking a soccer goal)?
object directedness - Is anyone in the video 
    interacting with an object?

SOCIAL PRIMITIVE FEATURES
agent distance - Are the people physically close 
    to one another or far apart?
facingness - To what extent are the people 
    facing each other?

SOCIAL INTERACTION FEATURES
joint action - Are the people acting 
    independently or jointly?
communication - Are the people communicating 
    or not?

AFFECTIVE FEATURES
valence - Is the action unpleasant or pleasant?
arousal - Is the action calm or emotionally 
intense/arousing?

Figure 1. A richly annotated, naturalistic video dataset of dyadic social actions

(A) Labeled feature categories in our video dataset include low-level visual, scene and object, social primitive, social interaction, and affective features. The text

description includes how the features were extracted algorithmically or the instructions that were presented to annotators.

(B and C) Images representative of videos in the dataset (one rated low and one rated high along the communication dimension), and the ratings on each of the

annotated dimensions for the two videos.

(D) The distribution of ratings across all videos in the dataset for the annotated dimensions, except indoor because it is a binary dimension.

(E) The regression of each pair of features, where values in the cells indicate significant correlations determined by permutation testing (FDR q < 0.05).

Because of MiT license restrictions, images are only representative of videos in the set. (B) is ‘‘File:Oleksandr Chemykos Hopak Class 16 (49845104268).jpg’’ by

Oleksandr Chemykos and (C) is ‘‘Parents and kids learn together’’ by DFID-UK Department for International Development. Both are licensed under CC BY 2.0.
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We curated a novel large-scale, naturalistic stimulus set of

dyadic social actions. These videos are dynamic and representa-

tiveof real-worldscenariosbut still somewhatcontrolled:all videos

contain exactly two people, and theywere labeled and selected to

ensure broad sampling of relevant visual and social features. We

showed these videos to participants in a condition-rich fMRI

experiment, which yielded high-quality data, particularly along

the lateral surface of the brain. We used a voxel-wise encoding

model approach to investigate how social action features were

represented across the whole brain and in regions of interest

(ROIs) along the lateral visual stream. We found that variance in

posterior to anterior regions along the lateral surface was ex-

plained by increasingly complex social features. Specifically,

communicative interactions uniquely explained variance along

the STS above all other features, suggesting that recognizing

communication (even in the absence of speech and language) is

a key computational goal of the STS and lateral pathway.

RESULTS

A richly annotated, naturalistic video dataset of dyadic
social actions
We curated a dataset of 250 two-person videos without sound

from the Moments in Time action recognition dataset,18 based

on the video’s action category and quality. Videos were each

3 s long and depicted typical, everyday actions based on re-

sponses to the American Time Use Survey.19 We limited our
5036 Current Biology 33, 5035–5047, December 4, 2023
stimulus set to two-person actions because the number of peo-

ple in a scene is often correlated with low-level visual and higher-

level social features.1

Each video was labeled on prior hypothesized features of so-

cial action and scene understanding. These feature categories

included low-level visual features computed algorithmically (ac-

tivations from AlexNet-conv220 and the output of a motion en-

ergy model21) and four categories of human-annotated features:

scene and object features, visual social primitives, social interac-

tions, and affective features (Figure 1A).

The first category of feature annotations included scene and

object features. To understand a social event, it is important to

establish the scene context in which it occurs and the objects

that are involved, and recent proposals have suggested that

these features may be critical to action representations along

the lateral pathway.7 Human annotators labeled three features

in this category previously found to be important to action repre-

sentations in the brain2,3,22: indoor scenes, the spatial expanse

(or the spatial scale of the scene, such as a small bathroom

versus a large auditorium), and object directedness (the extent

to which people in the scene were interacting with objects).

High-level social informationoftencorrelateswithvisual features

of people in a scene. In particular, the extent to which people are

facing and the distance between them have been identified as

twokey featurespredictingwhether people are judgedas interact-

ing.23,24 However, two people can be nearby and facing one

another but not be interacting, such as on crowded public
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Figure 2. Extensive scanning yields high-quality fMRI data

(A) Group-level explained variance by the encoding model of all features (purple bars), calculated as the signed-squared correlation between the predicted and

true responses in the test set. Error bars are the bootstrapped 95% confidence intervals. Significance was estimated using permutation testing and FDR cor-

rected: *FDR q < 0.05, **FDR q < 0.01, ***FDR q < 0.001. Gray shading indicates the average split-half reliability of repeated presentations of the same videos in

the test set for the least reliable subject (lower bound) and most reliable subject (upper bound). EVC, early visual cortex; MT, middle temporal area; EBA, ex-

trastriate body area; LOC, lateral occipital complex; pSTS-SI, social-interaction-selective posterior superior temporal sulcus; STS-Face, face-selective STS;

aSTS-SI, anterior STS-SI. ROIs on the surface of individual subjects are shown in Figure S1, and individual subject results are shown in Figure S2.

(B) Whole brain split-half reliability of repeated presentations of the same videos in the test set (related to the gray bars in A).

(C) The whole-brain explained variance by the full encoding model in one example subject (related to the purple bars in A). Whole-brain results in others subjects

are shown in Figure S2.
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transportation. For this reason—and following the work of

others25—we differentiate between the spatial configuration of

people in a scene and true social interactions. Here, we term these

visual cues thatmay be indicative of the presence of a social inter-

action ‘‘social primitives.’’ Human annotators rated two visual so-

cial primitive features: agent distance (how physically far apart the

two people in the video are from one another) and ‘‘facingness’’

(the degree to which the people face one another).

Next, we collected ratings for social interaction and affective

information in the dataset. Research on social interaction recog-

nition often depicts interactions via coordinated or joint actions

between agents (e.g., dancing or chasing5,26–29). Some studies

also depict communicative actions (e.g., gesturing toward or

shaking a fist at someone4,15,30), but these studies are in the

minority despite the prevalence of communicative actions in

daily life. Further, responses to these two different types of

interactions have only been compared with a limited extent

across studies.30 For these reasons, we separately collected

ratings for joint action and communication (Figures 1B and 1C).

We also collected ratings for affective features: valence and

arousal.

To ensure that our dataset captured meaningful variance of

our annotated features, we visualized the distribution of ratings

(Figure 1C). For many of the features, the ratings spanned the

full scale of possible values, with the exception of spatial

expanse and agent distance.

In addition, to assess the degree of overlap between features,

we performed pairwise regressions between each pair of fea-

tures (Figure 1E). As expected, AlexNet-conv2 predicts many

features, most strongly, motion energy and scene and object

features and, to a lesser extent, social primitive and social inter-

action features. Spatial expanse is highly predictive of agent dis-

tance. In contrast, social interaction and affective features are
not well predicted by scene and object features. Facingness is

somewhat predictive of communicative actions.

Although there are correlations present between features,

given the naturalistic nature of our stimulus set, further reducing

them is neither feasible nor desirable because many features

naturally covary in the real world. For example, designing a stim-

ulus set that eliminates the correlation between communication

and facingness would yield a set of videos that greatly differ

from the statistics of everyday interactions.31

Extensive scanning yields high-quality fMRI data
Tocollect a largeamountofhigh-qualitydata in individual subjects,

weopted for a condition-rich, small-n design.32,33 Participants (n=

4) viewed the videos in the fMRI scanner over four 2-h scan ses-

sions. Videos were divided into a training (n = 200, presented 9

or 10 times per participant) and test (n = 50, presented 18 or 20

times per participant) set.

In addition to the main experimental runs, participants

completed a battery of functional localizers (Figure S1).We local-

ized regions selective for faces (fusiform facearea [FFA] and face-

selective STS [STS-Face]), bodies (EBA), objects (lateral occipital

complex [LOC]), scenes (parahippocampal place area [PPA]),

and social interactions (social-interaction-selective posterior

STS [pSTS-SI] and social-interaction-selective anterior STS

[aSTS-SI]). We additionally defined anatomical ROIs based on

Wang et al.34 (EVC and middle temporal [MT] area). Though we

localized ventral regions (FFA and PPA), this paper will focus on

responses in lateral regions, given our overall aim of mapping

their cortical organization. We present results for these ventral

ROIs in the supplement.

To estimate the data quality of the test set, we correlated voxel

responses between odd and even presentations of each video.

We calculated the average correlation in each of our ROIs and
Current Biology 33, 5035–5047, December 4, 2023 5037
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found that the data quality was exceptionally high (mean r2 > 0.1

in every ROI; Figure 2) and thus sufficient for within-subject en-

coding model analyses. We found particularly high reliability in

bilateral posterior STS and along the STS in the right hemi-

sphere, which has been absent in prior studies, including others

with dynamic, naturalistic stimuli3 or with much more data for

static images.35 To remove noisy voxels from subsequent en-

coding model analyses, we used a liberal threshold correspond-

ing to a p value of 0.05 (one-tailed, uncorrected).

Annotated features predict brain responses along the
lateral surface of the brain
Before investigating how specific social visual features are orga-

nized in the brain, as a first step, we asked whether the combina-

tion of all features is predictive of responses in our ROIs. To test

this, we fit a voxel-wise encoding model using ordinary least

squares (OLS) regression on videos in the training set. From the

learned transformation, we predicted responses to videos in the

test set.Weused the signed-squaredcorrelation between the pre-

dicted and actual voxel-wise responses as the prediction metric.

After evaluating model performance in every reliable voxel, we

calculated the average prediction and estimated variance in pre-

diction for each ROI.

The encoding model predicted responses in nearly every ROI

on the lateral and ventral surfaces at the group-level (r2 > 0.08,

false discovery rate [FDR] q < 0.05, Figure 2A) and individual sub-

ject levels (Figure S3). Although prediction in each ROI did not

reach the noise ceiling (Figure 2A), our results are similar to other

encoding model papers with similarly high-quality, within-sub-

ject data.35–38 These results show that, all together, our features

explain significant variance of video responses along the lateral

visual pathway. We next sought to investigate how performance

varied across different categories of features.

Low- to high-level feature categories predict activity in
posterior to anterior ROIs along the lateral surface
To understand the contribution of each group of features to neu-

ral responses, we fit a separate encoding model for each of the

six categories of features: AlexNet-conv2, motion energy, scene

and object, social primitives, social interaction, and affective.

This initial feature analysis method allowed us to investigate

which regions are predicted by a given feature category without

removing shared variance between features.

In low-level regions, we found that responses are largely driven

by visual features. In particular, responses in EVCwere predicted

by AlexNet-conv2,motion energy, and scene and object features

(r2 > 0.03, FDR q < 0.01). MT was predicted by AlexNet-conv2,

motion energy, scene and object, and affective features

(r2 > 0.02, FDR q < 0.05), although the effect for AlexNet-conv2

in MT was driven by only two subjects (Figures 3A and S3A).

In mid-level regions, EBA and LOC, we found high predictivity

of many features. This is likely due to correlations of mid-level

features with both low-level visual and higher-level social fea-

tures in the dataset. EBA was significantly predicted by all

feature categories (r2 > 0.04, FDR q < 0.05), and LOC was pre-

dicted by all categories except social interaction features

(r2 > 0.03, FDR q < 0.05, Figure 3A).

The three regions in the STS were best predicted by social

interaction features. pSTS-SI and STS-Face regions were also
5038 Current Biology 33, 5035–5047, December 4, 2023
predicted by AlexNet-conv2, scene and object, social primitive,

and social interaction features (r2 > 0.03, FDR q < 0.05). aSTS-SI

was predicted by AlexNet-conv2, scene and object, and social

features (r2 > 0.04, FDR q < 0.05), although the effect for scene

and object features was driven by only two of four subjects

(Figure 3A).

Within the entire reliabilitymask,wealso visualizedwhichmodel

significantly predicted each voxel’s response. If two or more

models were significant, we visualized the model that maximally

predicted the voxel. In thiswhole-brain analysis,wealsosee apro-

gression from low-level features in early areas to abstract features

along the lateral surface (Figures 3B and S5A–S5D).

Although many categories are predictive across different re-

gions because of feature correlations in the stimulus set, these

results show a progression from the highest predictivity of low-

level visual and motion features in lower-level regions (EVC

and MT) to social primitives in mid-level regions (EBA and

LOC) to social interaction features in regions along the STS

(pSTS-SI, STS-Face, and aSTS-SI; Figure 3).

Unique variance is explained by increasingly abstract
social features along the lateral surface
To account for shared variance between our feature categories,

wenext used variancepartitioning tocalculate the uniquevariance

in voxel responses predicted by each category of features while

controlling for variance explained by all other feature categories.

In low-level areas, motion energy uniquely predicted re-

sponses in EVC (r2 = 0.04, FDR q < 0.001). MT was uniquely pre-

dicted by AlexNet-conv2, motion energy, and affective features

(r2 > 0.05, FDR q < 0.05), although the effect for AlexNet-conv2

features was driven by only two subjects (Figures 4A and S3B).

Inmid-level regions (Figure 4A), responses inEBAwereuniquely

predicted only bymotion energy features (r2 > 0.02, FDR q < 0.01).

Responses in LOC were robustly predicted by scene and object

and social primitive features (r2 > 0.02, FDR q < 0.001). To a lesser

extent, LOC responses were predicted by motion energy and af-

fective features (r2 > 0.006, FDR q < 0.05), although the affective

feature effect is driven by only two subjects (Figure S3B).

Along the STS (Figure 4A), all ROIs (pSTS-SI, STS-Face,

aSTS-SI) were uniquely predicted only by social interaction fea-

tures (r2 > 0.03, FDR q < 0.01), although the effect in pSTS was

driven by only two out of four subjects.

These results further reveal a pattern of increasing abstractness

of features along the lateral surface: low-level visual and motion

features explain unique variance in EVC andMT, scene and object

andsocial primitive features inLOC,andsocial interaction features

along the STS (particularly in the two more anterior regions). This

gradient can also be observed in the whole brain predictivity on

the lateral surface (Figures 4B and S5E–S5H). Although there is

somevariability across subjects at thewhole brain level, each sub-

ject shows a posterior to anterior gradient of low- (AlexNet-conv2

andmotion energy) tomid- (scene and object and social primitive)

to high-level social interaction features.

Communication uniquely predicts STS responses
In our final, and most stringent, analysis, we moved beyond

feature categories to investigate where individual features in

our stimuli explained unique variance relative to all other fea-

tures, including those in the same feature category.
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Figure 3. Low- to high-level feature categories predict activity along the lateral surface

(A) Group-level explained variance by each feature category in each of the lateral ROIs. Individual subject results are shown in Figure S3A and ventral ROI results

in Figure S4A–S4B. Error bars are the bootstrapped 95% confidence intervals. Significance was estimated using permutation testing and FDR corrected: *FDR

q < 0.05, **FDR q < 0.01, ***FDR q < 0.001.

(B) Encoding model preference map in one example subject. Voxels are colored by the category with the greatest significant prediction following multiple

comparison correction. Other subjects are in Figures S5A–S5D.
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In low-level regions, some features predicted responses in one

or two individual subjects, but no single feature robustly pre-

dicted EVC orMT responses. In particular, some small but signif-

icant effects were observed at the group level for communica-

tion, valence, and arousal in EVC or MT, but these effects were

driven by only one or two subjects each (r2 > 0.001, FDR

q < 0.05; Figures 5A and S3C).

In mid-level regions (Figure 5A), unique variance in EBA was

not predicted by any feature (r2 < 0.007, FDR q > 0.05), but

LOC was uniquely predicted by several mid-level features,

including object directedness, agent distance (in only two sub-

jects), and facingness (r2 > 0.005, FDR q < 0.05).

Along the STS (Figure 5A), all regions were uniquely pre-

dicted by communication (r2 > 0.03, FDR q < 0.01), although

the effect in pSTS-SI was driven by only two subjects. Surpris-

ingly, the magnitude of these effects was the same as both

combined social interaction features, suggesting the joint ac-

tion feature explains little variance along the STS. At the

group-level, aSTS-SI was also predicted by spatial expanse

(r2 = 0.007, FDR q < 0.05), but this effect was only present in

one subject.
For object directedness and communication, which robustly

predicted responses at the group and individual subject level,

we visualized howwell the features uniquely predicted responses

within all cortical voxels in the reliability mask (communication:

Figures 5B and S6E–S6H; object directedness: Figures S6A–

S6D). Though robust in theROI analysis, facingnessonly survived

multiple comparisons correction in the whole brain in two out of

four subjects. We find representations of object directedness

most strongly in lateral occipital regions of the left hemisphere

(Figures S6A–S6D), and communication represented along the

STS most strongly in the right hemisphere (Figures S6E–S6H).

These results further confirm the pattern of increasing abstract-

ness along the lateral surface of the brain and,moreover, provide

strong evidence that communicative actions particularly drive re-

sponses in the STS.

Social interaction selectivity along the STS is not driven
by face size or position
In addition to uniquely predicting responses along the STS (Fig-

ure 4A), social interaction features also uniquely predict activity

in the FFA (r2 = 0.02, FDR q < 0.01; Figure S4C). This raises
Current Biology 33, 5035–5047, December 4, 2023 5039



A

B

affective

social interaction

social primitive

scene & object

motion energy

AlexNet-conv2

Figure 4. Unique variance is explained by increasingly abstract social features along the lateral surface

(A) Group-level unique variance explained by each feature category in each of the lateral ROIs. Individual subject results are shown in Figure S3B and ventral ROI

results in Figure S4C–S4D. Error bars are the bootstrapped 95% confidence intervals. Significance was estimated using permutation testing and FDR corrected:

*FDR q < 0.05, **FDR q < 0.01, ***FDR q < 0.001.

(B) Encoding model preference map in one example subject. Voxels are colored by the category with the greatest significant unique prediction following multiple

comparison correction. Other subjects are in Figures S5E–S5H.
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the concern that social interaction features may be confounded

with face features (e.g., face size or position). However, the

pattern of responses in STS regions and FFA appear to be quite

different—social interaction features are more predictive than

other categories only in STS regions. To test this directly, we per-

formed a non-parametric ANOVA comparing ROI (pSTS-SI or

aSTS-SI versus FFA) and category (social interaction features

versus scene and object features) and found a significantly

greater relative response to social interactions in both pSTS-SI

and aSTS-SI in all four subjects (r2 > 0.02, FDR q < 0.05). These

results suggest that social interaction representations in the STS

are distinct from those in the FFA and unlikely to be the result of

face confounds in the stimulus set.

To further ensure that our social feature annotations were not

simply a product of the size and position of faces in the videos,

we annotated the location of faces in the scene using bounding

boxes and quantified the size and position of the faces as face

area and face centrality. Face area is the sum of the area of

the two face-bounding boxes averaged across frames, and

face centrality is the minimum distance of the two bounding

boxes from the center of the frame averaged across frames.
5040 Current Biology 33, 5035–5047, December 4, 2023
We found that face area was related to all scene and object

and social primitive features (r > ±0.15, FDR q < 0.05) but not so-

cial interaction or affective features (r < 0.13, FDR q > 0.05; Fig-

ure 6A). Face centrality was only correlated with the social prim-

itive features, agent distance and facingness (r > 0.21, FDR

q < 0.004; Figure 6B). Because face size and position were

only correlated with descriptors of the scene or configuration

of people within the scene, this demonstrates that our communi-

cation feature is not confounded with the size and position of

faces in the videos.

Social interaction selectivity is not explained by looking
at faces
In a post hoc analysis, we investigated whether the results pre-

sented heremay be the result of how people looked at the videos.

Two fMRI participants returned to participate in an eye tracking

experiment (sub-02 and sub-03) in addition to a group of new par-

ticipants (n = 11 in total). All participants viewed the 50 test set

videos while their gaze was tracked. From the eye tracking, we

computed a heatmap of fixations (Figure 6C). From the heatmaps,

we found that participants viewed the videos in a highly consistent
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Figure 5. Communication uniquely predicts STS responses

(A) Group-level unique variance explained by each individual annotated feature in each of the lateral ROIs. Individual subject results are shown in Figure S3C and

ventral ROI results in Figure S4E–S4F. Error bars are the bootstrapped 95% confidence intervals. Significance was estimated using permutation testing and FDR

corrected: *FDR q < 0.05, **FDR q < 0.01, ***FDR q < 0.001.

(B) Unique variance explained by the communication feature in one example subject. Map is thresholded to FDR q < 0.05. Other subjects are shown in Figure S6.
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manner, both across presentations within participants (average

within-subject split-half reliability = 0.51, range = 0.39–0.63, sub-

02 = 0.62, sub-03 = 0.48) and between participants (average in-

ter-subject reliability = 0.59, range = 0.41–0.72). The slightly higher

inter-subject than within-subject reliability is likely the result of a

less noisy estimate due to averaging over more trials and partici-

pants (see STARMethods).

The high inter-subject reliability validates the approach of

investigating the gaze pattern in a new group of participants.

More importantly, the high within-subject reliability suggests

that the pattern of fixation was highly similar across repetitions.

We investigated whether participants looked more consistently

at some types of videos than others by correlating both the

within- and between-subject reliability with annotated features.

We found no relation between any annotated feature and the

consistency of viewing within (r < ±0.13, FDR q > 0.05) or be-

tween subjects (r < ±0.17, FDR q > 0.05).

People tend to look at faces,39–45 which is true for our videos as

well (average proportion of samples within face-bounding boxes =

0.4, range = 0.26–0.47). As a result of this finding, we investigated

whether the proportion of time that participants spent looking at

faces was related to the content of the videos. We found that
most annotated features, except object directedness and facing-

ness (r < ±0.06, FDR q > 0.05), were correlated with the proportion

of time that participants spent looking at faces (r > ±0.13, FDR

q < 0.001; Figure 6D). Spatial expanse was significantly more

related to the proportion of looking at faces than communication

(difference of absolute correlation = 0.26, p < 0.001). Thus, the

timespent lookingat faces ismorestrongly relatedtoscenecontent

than social content of the videos. This is most likely because faces

tend to appear larger in close-up scenes and smaller in larger

scenes.

Together, the eye tracking results strongly suggest that the

findingof social interaction selectivity, andcommunication selec-

tivity in particular, is not explainable by participants’ viewing

behavior.

DISCUSSION

Here, we investigated the organization of features of social

actions on the lateral surface of the human brain. We intro-

duced a rich video dataset and accompanying high-quality

fMRI data to study social actions in naturalistic contexts. Us-

ing voxel-wise encoding models and variance partitioning, we
Current Biology 33, 5035–5047, December 4, 2023 5041
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Figure 6. Social interaction selectivity is not

explained by looking at faces

(A and B) The correlation between face area (A) and

face centrality (B) with feature ratings across the full

stimulus set. Significant correlations determined

through permutation test aremarked: *FDR q < 0.05,

**FDR q < 0.01, ***FDR q < 0.001.

(C) Average heatmap across participants overlaid

on still frames from two example videos. The white

boxes indicated the annotated face-bounding

boxes.

(D) The correlation between the proportion of time

spent looking at faces on each video correlated with

each of the annotated features. Each black dot is the

correlation for each eye tracking participant. Error

bars are the bootstrapped 95% confidence interval

(CI) averaged across participants. Significant cor-

relations are marked as in (A) and (B).

ll
OPEN ACCESS Article
found that social features are organized from low-level fea-

tures in EVC and MT, to mid-level features in EBA and LOC,

and abstract social features in the STS. Surprisingly, we found

that communicative actions in particular drive responses

along the STS.

Organization of the lateral stream
In their opinion piece arguing for a third visual stream special-

ized for social perception, Pitcher and Ungerleider8 suggested

that the lateral stream is organized hierarchically, with projec-

tions from the EVC to the MT and STS, and computes a range

of functions based on dynamic social cues. By broadly sam-

pling the space of dynamic, social actions, we provide the first

strong empirical test of hierarchical processing of increasingly

abstract features along the lateral stream. This is consistent

with other work that suggested similar organization based on

a smaller number of features.2,46 The combination of rich,

high-quality data and comprehensive feature sampling features

allows us to unify and expand findings across these prior

studies.

Wurm and Caramazza7 also recently argued that the lateral

surface is involved in social processing but that the lateral occi-

pitotemporal cortex (LOTC) is specialized for action perception

in particular. They present evidence for an object-to-person-

directed, ventral-to-dorsal organization of action-relevant fea-

tures on the lateral surface, similar to the broad inanimate-to-

animate organization of ventral occipitotemporal cortex. Investi-

gating animacy was not the main focus of our current study.

However, we do find that scene and object features are repre-

sented in amore ventral region of the LOTC (i.e., object-selective

LOC), and person-related features, like social primitive and

communicative actions, are represented in more dorsal regions

(i.e., EBA and STS). However, we also find social primitive repre-

sentations in the LOC. Further, we find preliminary evidence of
5042 Current Biology 33, 5035–5047, December 4, 2023
communicative representations most

strongly in the right hemisphere and object

responses in the left hemisphere (Fig-

ure S6), while their proposal centers solely

on the left hemisphere.2,7 Generally, we

interpret this organizational structure as
evidence for hierarchical processing in which intermediate rep-

resentations in the LOC support the computational goal of

higher-level regions along the STS.

Communicative actions
We find evidence that representing communicative action may

be a key computational goal of the lateral visual stream, but it

may be one goal among others. For instance, the STS has

been implicated in many different functions, including dynamic

face perception, biological motion perception, speech process-

ing, theory of mind, and audiovisual integration.47,48

Previous work has established that there are selective re-

sponses to the presence of social interactions in a region of the

pSTS in both controlled4,6,15 and naturalistic13 stimuli. Some of

these studies used communicative actions4,13,15 and others

used Heider and Simmel49 displays that, while not communica-

tive, have narrative structure.4,6,14 None of these neuroimaging

studies investigated differential responses to joint versus

communicative actions, but behavioralworkwith controlled stim-

uli suggests that both communicative and joint actions are pro-

cessed preferentially.28,30 Here, we find robust unique represen-

tations of communicative, but not joint, actions along the STS.

This finding suggests that STS responses to social interactions

are, more specifically, driven by communicative actions.

Although responses to communicative actions in the STS have

been shown in prior studies,50,51 these studies all focused on

second-person or participant-directed communicative re-

sponses. In fact, prior work has argued that the goal of the

STS is to process such participant-directed interactions.52

Here, we find that observed third-party communicative interac-

tions strongly and robustly drive responses in regions along

the STS. This finding builds significantly on prior work by sug-

gesting that the STS is not only involved in processing the

communicative actions of one’s own social partners but also
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processes all observed communicative actions. As we did not

include any participant-directed videos, it remains an open

question to what extent representations of communicative ac-

tions directed at oneself versus others overlap in the STS.

The representation of communication here is not driven by

hearing speech or language, as our videos were shown to partic-

ipants without sound. It is possible, however, that the communi-

cation results are driven by ‘‘visual speech’’ (e.g., seeing mouth

movements47,51,53–55) rather than amore abstract representation

of communication. This seems unlikely for a few reasons. First,

the size and position of faces in the scene was unrelated to the

presence of communication (Figures 6A and 6B). Further, while

there is a trend to look more at faces for communicative videos,

the time spent looking at faces is more related to the spatial

expanse of the scene (likely due to the relation between spatial

expanse and the size of faces in the videos; Figures 6A and

6D). Finally, the communication responses, particularly in more

anterior regions, are largely right lateralized (Figure S6) suggest-

ing that they are not the result of simulated speech or language

(both of which are largely left lateralized56).

Joint actions
A large body of behavioral work suggests that joint actions are

processed in a preferential manner.26–29,57–59 However, we do

not find evidence that joint actions are uniquely represented in

the STS or elsewhere. It may be the case that joint action is

confounded with other features in the stimulus set, but given

the number of features in our dataset, it is infeasible to investi-

gate the shared variance between every combination of features.

Future studies with controlled stimuli could better disentangle

communicative and joint actions in order to investigate whether

joint actions drive responses in the STS—but possibly to a lesser

extent than communicative actions. An alternative possibility is

that the type of social interactions that the humanmind and brain

particularly cares about are communicative actions.

Affective features
Althoughaffective featuresare thought tobe represented largely in

subcortical regions, some recent work has found affective repre-

sentations of sensory content in ventral visual regions.60 Here,

we investigatedwhether valence and arousal are also represented

in lateral regions. Previous research found that the goal compati-

bility of agents (helping versus hindering or cooperation versus

competition) is represented in the pSTS4,6 suggesting that this re-

gion may represent the affective content of the social interactions

(e.g., positive versus negative interactions). Although we did find

representations of affective features in early- and mid-level lateral

regions (MT, EBA, and LOC) in our most permissive analysis, we

did not find evidence that affective features explain unique vari-

ance along the lateral stream. Future studies that better de-

confound affective features from visual and social features may

be better able to answer this question.

Social primitive features
As in previous work,10,11,15 in our most permissive analysis, we

found that the EBA represents social primitive features, such

as whether two people were facing one another and their spatial

distance. However, after controlling for other features, we did not

find unique representations of social primitives in the EBA
although we did find unique variance explained in the nearby

LOC. Prior studies have found selectivity for facing bodies

outside of the EBA in nearby regions, but they did not localize

the LOC, so it is not possible to know whether their activations

fall within the object-selective cortex.10,11 It is important to

note that the EBA and LOC are extremely close by and overlap-

ping in most individual subjects (Figure S1). Why may object-se-

lective cortex represent the facingness and distance of bodies?

One possibility is that the LOC represents relational information

about objects more generally.61

In the current study, we adopted the perspective that the

configuration of bodies can be a visual cue indicative of a social

interaction, but that these cues do not make a social interaction

in and of themselves. This has been argued for by others,25

though controlled stimuli such as nearby facing bodies are often

referred to as social interactions in other work.12,61,62 Here, we

find evidence that social primitives are represented in mid-level

regions in the lateral stream and more abstract social interaction

features in higher-level areas. Our results are consistent with the

idea that the visual system uses cues like distance and facing-

ness as precursors to process social interactions.

Motion features
In this study,while ourmotion energy features predict responses in

area MT, they are not predictive of responses in regions along the

STS, even in our most permissive analysis (Figure 3A). This may

seem in contrast with prior findings63,64 of strong responses in

the STS when viewing or attending to agentic motion. However,

one of these studies63 found that motion was less predictive of

fMRI responses when the videos did not contain social features.

In our case, we did not separately model motion depending on

the source (e.g., object, camera, and social motion). In addition,

ourmotion features are relatively low-level and thusunlikely to cap-

ture the more complicated motion patterns that distinguish be-

tween biological and non-biological motion. With this in mind,

and based on strong evidence that dynamic stimuli drive STS re-

sponses to a much greater extent than static stimuli in both hu-

mans64andmacaques,63and fordifferent kindsof social content,65

we do not take our current finding as evidence that the STS does

not respond to motion but instead, as consistent with the hypoth-

esis that the STS is selective for agentive motion, in particular.

Beyond the lateral stream
In ventral regions, the primary group of features we see repre-

sented are scene and object features. It is unsurprising that

scene features, particularly indoor scenes and spatial expanse,

are represented in the PPA. Scene features in our dataset are

also heavily confounded with the size and visibility of faces in

our videos (e.g., close-up videos have larger and more clearly

visible faces; Figure 6).

Although we only localized regions within the ventral and lateral

visual streams, we also see reliable responses to our stimuli in pa-

rietal and frontal regions, which are sometimes referred to as part

of the action observation network66 and havealsobeen implicated

in social interaction recognition.67 However, we do not find any

feature representations in these regions that are consistent across

subjects (Figure S5). Thus, while these regions are responding

consistently to the videos in our dataset, they are not representing

the features related to social action considered here. While some
Current Biology 33, 5035–5047, December 4, 2023 5043
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prior work has found functional responses to faces in the inferior

frontal gyrus (IFG) and STS to be similar,68,69 suggesting that IFG

mayalso represent social content, face- andsocial-interaction-se-

lective regions in the STS, although nearby, are disassociated.4 .

Thus, our results are consistent with growing evidence that these

regions do not represent social features of actions.7

Concluding remarks
Here, we find evidence for increasingly abstract social feature rep-

resentations along the lateral visual stream. We also find that re-

gions along the STS are particularly responsive to communicative

actions. Understanding how these brain responses relate to those

specialized for other types of communicative signals, particularly

via language, opens exciting avenues for future research.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

B Video annotation participants

B fMRI participants

B Eye tracking participants

d METHOD DETAILS

B Stimulus set

B fMRI Experiment

B Eye tracking experiment

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Feature regression

B fMRI Preprocessing

B fMRI GLM

B ROI definition in native space

B Voxel-wise encoding models

B Evaluating face-related effects

B Eye tracking

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cub.2023.10.015.

ACKNOWLEDGMENTS

This work was funded in part by NSF GRFP DGE-1746891 awarded to E.M.

and NIMH R01MH132826 awarded to L.I. We would like to thank Elah�e Yar-

gholi and Maryam Vaziri-Pashkam for sharing their biological motion localiza-

tion stimuli and scripts. Thank you to Diana Dima, Manasi Malik, and Raj Ma-

gesh Gauthaman for helpful comments on earlier versions of this paper.

AUTHOR CONTRIBUTIONS

All authors developed the concept for the paper and planned the experiments.

E.M. performed the experiments, analyzed the data, wrote the manuscript,

and designed the figures. All authors contributed to finalizing the manuscript.
5044 Current Biology 33, 5035–5047, December 4, 2023
DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: April 26, 2023

Revised: September 1, 2023

Accepted: October 10, 2023

Published: November 1, 2023; corrected online: January 31, 2024
REFERENCES

1. Dima, D.C., Tomita, T.M., Honey, C.J., and Isik, L. (2022). Social-affective

features drive human representations of observed actions. eLife 11,

e75027. https://doi.org/10.7554/eLife.75027.

2. Wurm, M.F., Caramazza, A., and Lingnau, A. (2017). Action categories in

lateral occipitotemporal cortex are organized along sociality and transi-

tivity. J. Neurosci. 37, 562–575. https://doi.org/10.1523/JNEUROSCI.

1717-16.2016.

3. Tarhan, L., and Konkle, T. (2020). Sociality and interaction envelope orga-

nize visual action representations. Nat. Commun. 11, 3002. https://doi.

org/10.1038/s41467-020-16846-w.

4. Isik, L., Koldewyn, K., Beeler, D., and Kanwisher, N. (2017). Perceiving

social interactions in the posterior superior temporal sulcus. Proc. Natl.

Acad. Sci. USA 114, E9145–E9152. https://doi.org/10.1073/pnas.

1714471114.

5. Sliwa, J., and Freiwald, W.A. (2017). A dedicated network for social inter-

action processing in the primate brain. Science 356, 745–749. https://

doi.org/10.1126/science.aam6383.

6. Walbrin, J., Downing, P., and Koldewyn, K. (2018). Neural responses to

visually observed social interactions. Neuropsychologia 112, 31–39.

https://doi.org/10.1016/j.neuropsychologia.2018.02.023.

7. Wurm, M.F., and Caramazza, A. (2022). Two ‘what’ pathways for action

and object recognition. Trends Cogn. Sci. 26, 103–116. https://doi.org/

10.1016/j.tics.2021.10.003.

8. Pitcher, D., and Ungerleider, L.G. (2021). Evidence for a third visual

pathway specialized for social perception. Trends Cogn. Sci. 25,

100–110. https://doi.org/10.1016/j.tics.2020.11.006.

9. DiCarlo, J.J., Zoccolan, D., and Rust, N.C. (2012). How does the brain

solve visual object recognition? Neuron 73, 415–434. https://doi.org/

10.1016/j.neuron.2012.01.010.

10. Abassi, E., and Papeo, L. (2020). The representation of two-body shapes

in the human visual cortex. J. Neurosci. 40, 852–863. https://doi.org/10.

1523/JNEUROSCI.1378-19.2019.

11. Abassi, E., and Papeo, L. (2022). Behavioral and neural markers of visual

configural processing in social scene perception. NeuroImage 260,

119506. https://doi.org/10.1016/j.neuroimage.2022.119506.

12. Landsiedel, J., Daughters, K., Downing, P.E., and Koldewyn, K. (2022).

The role of motion in the neural representation of social interactions in

the posterior temporal cortex. NeuroImage 262, 119533. https://doi.

org/10.1016/j.neuroimage.2022.119533.

13. Lee Masson, H., and Isik, L. (2021). Functional selectivity for social inter-

action perception in the human superior temporal sulcus during natural

viewing. NeuroImage 245, 118741. https://doi.org/10.1016/j.neuro-

image.2021.118741.

14. Varrier, R.S., and Finn, E.S. (2022). Seeing social: A neural signature for

conscious perception of social interactions. J. Neurosci. 42, 9211–

9226. https://doi.org/10.1523/JNEUROSCI.0859-22.2022.

15. Walbrin, J., and Koldewyn, K. (2019). Dyadic interaction processing in the

posterior temporal cortex. NeuroImage 198, 296–302. https://doi.org/10.

1016/j.neuroimage.2019.05.027.

16. Redcay, E., and Moraczewski, D. (2020). Social cognition in context: a

naturalistic imaging approach. NeuroImage 216, 116392. https://doi.

org/10.1016/j.neuroimage.2019.116392.

https://doi.org/10.1016/j.cub.2023.10.015
https://doi.org/10.1016/j.cub.2023.10.015
https://doi.org/10.7554/eLife.75027
https://doi.org/10.1523/JNEUROSCI.1717-16.2016
https://doi.org/10.1523/JNEUROSCI.1717-16.2016
https://doi.org/10.1038/s41467-020-16846-w
https://doi.org/10.1038/s41467-020-16846-w
https://doi.org/10.1073/pnas.1714471114
https://doi.org/10.1073/pnas.1714471114
https://doi.org/10.1126/science.aam6383
https://doi.org/10.1126/science.aam6383
https://doi.org/10.1016/j.neuropsychologia.2018.02.023
https://doi.org/10.1016/j.tics.2021.10.003
https://doi.org/10.1016/j.tics.2021.10.003
https://doi.org/10.1016/j.tics.2020.11.006
https://doi.org/10.1016/j.neuron.2012.01.010
https://doi.org/10.1016/j.neuron.2012.01.010
https://doi.org/10.1523/JNEUROSCI.1378-19.2019
https://doi.org/10.1523/JNEUROSCI.1378-19.2019
https://doi.org/10.1016/j.neuroimage.2022.119506
https://doi.org/10.1016/j.neuroimage.2022.119533
https://doi.org/10.1016/j.neuroimage.2022.119533
https://doi.org/10.1016/j.neuroimage.2021.118741
https://doi.org/10.1016/j.neuroimage.2021.118741
https://doi.org/10.1523/JNEUROSCI.0859-22.2022
https://doi.org/10.1016/j.neuroimage.2019.05.027
https://doi.org/10.1016/j.neuroimage.2019.05.027
https://doi.org/10.1016/j.neuroimage.2019.116392
https://doi.org/10.1016/j.neuroimage.2019.116392


ll
OPEN ACCESSArticle
17. Haxby, J.V., Gobbini, M.I., and Nastase, S.A. (2020). Naturalistic stimuli

reveal a dominant role for agentic action in visual representation.

NeuroImage 216, 116561. https://doi.org/10.1016/j.neuroimage.2020.

116561.

18. Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S.A., Yan,

T., Brown, L., Fan, Q., Gutfruend, D., Vondrick, C., et al. (2019). Moments

in time dataset: one million videos for event understanding. IEEE Trans.

Pattern Anal. Mach. Intell. 42, 502–508. https://doi.org/10.1109/TPAMI.

2019.2901464.

19. U.S. Bureau of Labor Statistics; U.S. Census Bureau (2019). American

Time Use Survey — 2019 Results. https://www.bls.gov/news.release/

archives/atus_06252020.pdf.

20. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). ImageNet classifi-

cation with deep convolutional neural networks. In Adv. Neural Inf.

Process. Syst., 25, F. Pereira, C.J.C. Burges, L. Bottou, and K.Q.

Weinberger, eds. (Curran Associates, Inc.), pp. 1097–1105.

21. Adelson, E.H., and Bergen, J.R. (1985). Spatiotemporal energy models

for the perception of motion. J. Opt. Soc. Am. A 2, 284–299. https://

doi.org/10.1364/JOSAA.2.000284.

22. Tucciarelli, R., Wurm, M., Baccolo, E., and Lingnau, A. (2019). The repre-

sentational space of observed actions. eLife 8, e47686. https://doi.org/

10.7554/eLife.47686.

23. Papeo, L. (2020). Twos in human visual perception. Cortex 132, 473–478.

https://doi.org/10.1016/j.cortex.2020.06.005.

24. Zhou, C., Han, M., Liang, Q., Hu, Y.-F., and Kuai, S.-G. (2019). A social

interaction field model accurately identifies static and dynamic social

groupings. Nat. Hum. Behav. 3, 847–855. https://doi.org/10.1038/

s41562-019-0618-2.

25. Hochmann, J.-R., and Papeo, L. (2021). How can it be both abstract and

perceptual? Comment on Hafri, A., & Firestone, C. (2021), The perception

of relations, Trends in Cognitive Sciences. https://doi.org/10.31234/osf.

io/hm49p.

26. Gao, T., Newman, G.E., and Scholl, B.J. (2009). The psychophysics of

chasing: A case study in the perception of animacy. Cogn. Psychol. 59,

154–179. https://doi.org/10.1016/j.cogpsych.2009.03.001.

27. Gao, T.,McCarthy,G., andScholl, B.J. (2010). Thewolfpackeffect: percep-

tion of animacy irresistibly influences interactive behavior. Psychol. Sci. 21,

1845–1853. https://doi.org/10.1177/0956797610388814.

28. Neri, P., Luu, J.Y., and Levi, D.M. (2006). Meaningful interactions can

enhance visual discrimination of human agents. Nat. Neurosci. 9,

1186–1192. https://doi.org/10.1038/nn1759.

29. Quadflieg, S., andKoldewyn, K. (2017). The neuroscienceof peoplewatch-

ing: how the human brain makes sense of other people’s encounters. Ann.

N. Y. Acad. Sci. 1396, 166–182. https://doi.org/10.1111/nyas.13331.

30. Manera, V., Del Giudice, M., Bara, B.G., Verfaillie, K., and Becchio, C.

(2011). The second-agent effect: communicative gestures increase the

likelihood of perceiving a second agent. PLoS One 6, e22650. https://

doi.org/10.1371/journal.pone.0022650.

31. Grall,C., andFinn,E.S. (2022).Leveragingthepowerofmedia todrivecogni-

tion: a media-informed approach to naturalistic neuroscience. Soc. Cogn.

Affect. Neurosci. 17, 598–608. https://doi.org/10.1093/scan/nsac019.

32. Mahowald, K., and Fedorenko, E. (2016). Reliable individual-level neural

markers of high-level language processing: A necessary precursor for

relating neural variability to behavioral and genetic variability. NeuroImage

139, 74–93. https://doi.org/10.1016/j.neuroimage.2016.05.073.

33. Naselaris, T., Allen, E., and Kay, K. (2021). Extensive sampling for com-

plete models of individual brains. Curr. Opin. Behav. Sci. 40, 45–51.

https://doi.org/10.1016/j.cobeha.2020.12.008.

34. Wang, L., Mruczek, R.E.B., Arcaro, M.J., and Kastner, S. (2015).

Probabilistic maps of visual topography in human cortex. Cereb.

Cortex 25, 3911–3931. https://doi.org/10.1093/cercor/bhu277.

35. Allen, E.J., St-Yves, G., Wu, Y., Breedlove, J.L., Prince, J.S., Dowdle, L.T.,

Nau, M., Caron, B., Pestilli, F., Charest, I., et al. (2022). A massive 7T fMRI
dataset to bridge cognitive neuroscience and artificial intelligence. Nat.

Neurosci. 25, 116–126. https://doi.org/10.1038/s41593-021-00962-x.

36. Bonner, M.F., and Epstein, R.A. (2018). Computational mechanisms un-

derlying cortical responses to the affordance properties of visual scenes.

PLoS Comput. Biol. 14, e1006111. https://doi.org/10.1371/journal.pcbi.

1006111.
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Deposited data

raw fMRI data This paper, OpenNeuro https://doi.org/10.18112/

openneuro.ds004542.v1.0.0

preprocessed fMRI,
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data

This paper, OSF https://osf.io/4j29y/

Moments in Time dataset Monfort et al.18 http://moments.csail.mit.
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and MT

Wang et al.34 https://napl.scholar.

princeton.edu/document/66

Face, body, scene, and

object parcels

Julian et al.70 https://web.mit.edu/bcs/
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Social perception regions Deen et al.47 https://bendeen.com/data/

Software and algorithms

custom code This paper https://doi.org/10.5281/

zenodo.8381199

pymoten Nunez-Elizalde et al.71 https://doi.org/10.5281/

zenodo.6349625

Pre-trained AlexNet PyTorch72 https://pytorch.org/hub/

pytorch_vision_alexnet/

PyTorch Paszke et al.72 https://pytorch.org

scikit-learn Pedregosa et al.73 https://scikit-learn.org/

stable/index.html

fMRIPrep Esteban et al.74 https://doi.org/10.1038/

s41592-018-0235-4

FreeSurfer Reuter et al.75 https://freesurfer2016.
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Advanced Normalization

Tools

Avants et al.76 https://github.com/
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Nilearn Abraham et al.79 https://nilearn.github.io/

stable/index.html
RESOURCE AVAILABILITY

Lead contact
Further information or access to the stimuli in the current study, please contact the corresponding author, Emalie McMahon,

emaliemcmahon@jhu.edu.

Materials availability
The only material contribution of this study is the video stimulus set. Because of MiT licenses restrictions, please email the corre-

sponding author for access to the videos used in the current study.

Data and code availability
We have made all data and code for this project available for others to use. See key resources table for links.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Video annotation participants
Annotations were collected on the Prolific platform. Only American participants with normal or correct-to-normal vision and with a

prior approval rate greater than 85% were eligible to join. Prior to participation, participants (n = 2279) gave informed consent.

The Johns Hopkins University Press Institutional Review Board approved the consent and protocol. Participants received monetary

compensation for their time (rate of $10 per hour). Demographic data was saved from Prolific at a later date than responses on the

main task resulting in some missing demographic data; subject numbers report the number of participants with demographic data

[Gender (n = 2014): female = 979, male = 1121, prefer not to say = 4; Age (n = 2085): M = 36.26, SD = 12.44)] .

fMRI participants
fMRI data were collected in four participants (Females = 2, mean age 25.5 years, range 23–30 years, 3 Caucasian and 1 Asian). All

participants were right-handed and had normal or corrected-to-normal vision. Participants gave written informed consent before

participation and were monetarily compensated for their time. The Johns Hopkins School of Medicine Institutional Review Board

approved the consent and protocol.

Eye tracking participants
Thirteen participants participated in the eye tracking experiment (9 females, 4males,mean age 26 years, range 18-35 years, 7 Cauca-

sian, 5 Asian, and 1 other). Two participants were not analyzed due to poor data quality during the session: one participant fell asleep,

and the other’s pupil was not reliably identified by the eye tracker throughout the experiment. Participants had normal vision or

sufficient visual acuity to appreciate the videos at the presented distance. Participants gave written informed consent before partic-

ipation and were monetarily compensated for their time. The Johns Hopkins University Institutional Review Board approved the con-

sent and protocol.

METHOD DETAILS

Stimulus set
Stimulus selection

The stimulus set is a subset of the MiT dataset.18 MiT is a large dataset containing many social action categories. For this reason,

previous cognitive neuroscience work has also used subsets of MiT to study event80 and social action perception.1 We procedurally

removed videos to select a set reasonable for a cognitive neuroscience experiment (n = 250). We first removed action categories that

were unlikely to contain human actions (e.g., feeding or bubbling) or human actions that were not common-place actions as defined

by the American Time Use Survey (e.g., spitting).19

Following this, we reduced the stimulus set to videos with only two people (a critical distinction from the abovementioned cognitive

neuroscience studies using MiT) because the number of people is a reliable indicator of sociality.1,22 Specifically, we used Amazon’s

Rekognition face-detection algorithm to select the videos that the model determined to have exactly two people with 95% confi-

dence. From this subset, we manually removed videos with greater than or fewer than two people leaving 2,751 videos. To make

social interpretations straightforward, we then removed videos with staged actions (e.g., instructional or stock videos) and videos

showing a person speaking to someone off-camera. We also removed videos based on these criteria: animation, obvious scene

cuts, watermarks/logos, obvious temporal distortions (either slow-motion or time-lapse), and low spatial or temporal resolution.

This left 723 videos. We resampled videos to be 30 Hz and have precisely ninety frames. We also center-cropped videos to be

square and resized all videos to 500 x 500 pixels. Center-cropping removed a person from the video in some cases so these videos

were removed (n = 3).

On this 720 video dataset, we collected annotations of several dimensions (spatial expanse, object directedness, agent distance,

communication, joint action, intimacy, dominance, cooperation, valence and arousal). These dimensions were based off prior neuro-

imaging of social actions1–3,22 and social features that may be extracted visually.29 Three dimensions (intimacy, dominance, and

cooperation) were ultimately not included in the final analyses because preliminary encoding models using cross-validation within

the fMRI training set did not reveal significant prediction in ROIs across subjects.

Based on previous literature, we anticipated that joint action would be the primary feature of social interactions represented in the

brain,28 but we wanted detection of joint action to not be trivial based on low- or mid-level visual cues. As a result, we chose to select

the videos for the final stimulus set that would reduce the rank correlation between joint action and agent distance (rho(718) = -0.4) as

has been done in previous work.81 Separately for indoor and outdoor videos, we randomly removed videos (nindoor = 120, noutdoor =

100) with agent distance rating below the mean and joint action rating above the mean. The resulting rank correlation was reduced

(rho(498) = -0.3).

From this set (n = 500), the final stimulus set shown in the scanner (n = 250) was selected to remove videos with camera panning or

excessive camera motion. The training-test split was performed by randomly splitting the dataset in two hundred and 50 video sets.

To ensure that the test set was not out of distribution of the training set, the distribution of ratings for key features (indoor, spatial

expanse, and joint action) was visually inspected to determine whether the spread of these feature values was qualitatively similar

in the training and test sets. This process was repeated until a good split was found.
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Annotations of the facingness feature were collected after the selection of the final set based on emerging evidence that facingness

is represented in EBA.10,11,82

Annotations

Participants rated 40 videos on a single feature on a Likert Scale from one to five. This was done for each of the features in Figure 1

with two exceptions: facingness, which was collected later than the other features, was rated in groups of 25 videos, and indoor was

rated only by the first author. Videos appeared one at a time at a resolution of 500 x 500 pixels at a frame rate of 30 Hz. They had

unlimited time to respond but had to respond to continue with the experiment.

We removed participants with incomplete data (n = 225) or who used only one or two of the five Likert options across all videos

(n = 41). Additionally, we iteratively excluded participants if the correlation of their responses with that of other participants was

more than three standard deviations away from the mean (n = 62).

Following data cleaning, ratings were min-max scaled to be in the range of zero-to-one from the Likert range of one-to-five. The

average rating for each video was treated as a single-dimensional representation of a particular feature for that video and used in the

subsequent encoding models.

Algorithmic feature extractions

Because AlexNet-conv2 is a goodmodel of EVC,83 low-level visual features were estimated using the second convolutional (AlexNet-

conv2) layer of an ImageNet84 trained AlexNet.20 We extracted activations from AlexNet-conv2 using PyTorch72 for each frame and

then averaged activations across all frames of the three-second video. The dimensionality of the featureswas reduced using principal

components analysis (PCA) learned in the training set and applied to the test set. The number of PCs needed to reach the elbow was

calculated algorithmically with knee.85

Motion energy was estimated with an Adelson and Bergen model21 implemented in pymoten71 using the default pyramid with a

temporal window of 10 frames. The motion energy was then averaged across spatiotemporal windows. PCA was again used to

reduce dimensionality (PCs = 3).

fMRI Experiment
Multi-session scanning

Scanning for each participant took place over four separate 2 h sessions. During these sessions, three participants completed 60

runs of the experiment (10 repeats of training videos, 20 of test videos), and one completed 54 runs (9 repeats of training videos,

18 of test videos). High-resolution anatomical images were collected during each session for EPI registration. Participants completed

a battery of functional localizer tasks during the first scanning session.

Faces, bodies, objects, and scenes functional localizer

To localize face, body, and object regions, participants completed three runs of a dynamic localizer from Pitcher et al.65 Three of the

four participants saw blocks with faces, bodies, objects, scenes, and scrambled objects (duration = 414 s). One participant only saw

faces, bodies, objects, and scenes (duration = 342 s).

Social interaction functional localizer

Participants completed three runs of a social interaction localizer using point light figures either interacting (social interactions) or

performing independent actions (nonsocial actions) from Isik et al.4 The duration of each scan was 159 s.

Biological motion functional localizer

Participants completed two runs of a biological motion localizer from Yargholi et al.86 The duration of the scans was 435 s. The task

was composed of intact point-light figures, position-scrambled point-light figures, random translational motion, and static point-light

figures.

Theory of mind functional localizer

To localize theory of mind regions, participants completed two runs of the false belief task based on Dodell-Feder et al.87 Each run

lasted for 273 s.

Main task procedure

Participants in the scanner viewed 250 three-second videos. Following annotation, we separated the videos into training (two hun-

dred videos) and test sets (fifty videos) such that the distribution of ratings for joint action and indoor was similar between training and

test sets.

The experiment was designed in sections of six fMRI runs. Within a section, the two hundred training videos were randomly sepa-

rated into four runs of fifty videos. To generate a highly reliable test set for model estimation, we presented test videos in separate

runs twice per section.

Within a run, the order of videos was always randomized. Participants freely viewed fifty dyadic videos and five randomly inter-

spersed ‘‘crowd’’ videos containing many people. To ensure participants remained attentive, they hit a button for every crowd pre-

sentation. Every participant detected the crowd videos with greater than 99% accuracy. Following beta-weight estimation in the

GLM, we excluded crowd videos from all subsequent analyses.

The videoswere each shown for 3 s at a resolution of 500 x 500 pixels and a frame rate of 30Hz. A black screenwas shown between

each video for 1.5 s. On a random ten trials per run, an additional 1 TR (1.5 s) jitter was added to the ISI timing. The first stimulus was

presented 2 TRs after the start of the first steady-state volume, and the run ended 9 TRs after the final video. The total run time was

279 s.
e3 Current Biology 33, 5035–5047.e1–e8, December 4, 2023
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fMRI acquisition parameters

All fMRI scans were conducted on a 3T Philips Elition RX scanner (with a 32-channel head-coil) at the F.M. Kirby Research Center for

Functional Brain Imaging at the Kennedy Krieger Institute.

During the first scanning session, we collected two anatomical scans. One was collected with an axial primary slice direction and

the other with a sagittal primary slice direction. The sagittal scan only occurred during the first session. The axial scan was repeated

during every session. All five anatomical scans were combined with fMRIPrep.

The axial scans were performed with a T1-weighted magnetization-prepared rapid-acquisition gradient-echo sequence with the

following parameters: repetition time (TR) = 8.0 ms, echo time (TE) = 3.7 ms, flip angle = 8�, voxel size = 0.95 x 0.95 x 1 mm3 field of

view = 224 x 224 x 150 mm3.

The sagittal scanswere performedwith a T1-weightedmagnetization-prepared rapid-acquisition gradient-echo sequencewith the

following parameters: repetition time (TR) = 7.6 ms, echo time (TE) = 2.4 ms, flip angle = 18�, voxel size = 1 x 1 x 1 mm3 field of view =

240 x 240 x 180 mm3

T2*-weighted functional data were acquired using a multi-band (factor 4) gradient-echo echo-planar imaging sequence with the

following parameters: repetition time (TR) = 1.5 s, echo time (TE) = 30 ms, flip angle = 52�, voxel size = 2 x 2 x 1.93 mm3, field of

view = 216 x 120 mm2, and 60 axial slices spanning across the entire cortex.

Eye tracking experiment
Apparatus

Videos were presented using Psychtoolbox,88–90 while eye tracking data were collected with a tower-mounted EyeLink CL 4.56 eye-

tracker (SR Research Ltd, 2012). Videos were displayed on a 435mmx 240mmmonitor (1600 x 900 pixels) in the center of the screen

at a resolution of 900 x 900 pixels and extended 21 degrees of visual angle. Participants’ monocular (right eye) gaze was tracked

remotely at a sampling rate of 500 Hz, while they were seated in a chin rest.

Procedure

The experiment consisted of 440 trials overall consisting of the 50 videos in the test set (presented 8 times each with repetitions

across blocks) and 40 catch trials. Before the experiment, participants were told of the structure of the experiment, to hit the any

button for the catch trials, and otherwise to watch the videos normally. The experiment was divided into halves with 9-point calibra-

tion performed before each half. The experiment took place in a darkened roomwith the experimenter in a separate roommonitoring

the eye tracking quality and controlling calibration.

One block of the experiment consisted of viewing all 50 videos in a random order. On an additional 5 trials during the block, par-

ticipants saw videos with a crowd of people. As in the fMRI experiment, participants were instructed to push a button on these trials.

Videos were presented for their duration (3 s) with 750 ms of blank screen between videos. Between blocks, participants had self-

timed breaks during which they were instructed to rest their eyes but stay in the chin rest. At the half-way point, participants were

allowed to sit back and tell the experimenter when they were ready to continue.

QUANTIFICATION AND STATISTICAL ANALYSIS

Feature regression
To quantify the relation among all features of our stimulus set, we performed pairwise regression between all pairs of features. We

learned a linear mapping between the predictor and predicted feature in the training set and predicted the response in the test set.

The sign-squared correlation between the predicted response and true rating defines the strength of the relation between each pair of

features. We used permutation testing to test significance by randomly shuffling stimulus labels in the test set and repeating the pre-

diction procedure five thousand times to estimate a null distribution. To estimate variance, we performed bootstrapping over random

paired samples of the data over five thousand resamples.

Because AlexNet-conv2 and motion energy are multidimensional while all other features are one dimensional, they were always

used as the predictor of the annotated features. Further, to establish the relation between AlexNet-conv2 and motion energy, the

motion energy PCs were averaged prior to prediction.

fMRI Preprocessing
fMRIPrep

Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.2,74,91 which is based on Nipype

1.6.1.92,93

The next three sections (B0 inhomogeneity mappings, anatomical data, and functional data) of boilerplate text were automatically

generated by fMRIPrepwith the express instructions that users should copy and paste this text into theirmanuscripts unchanged. It is

released under the CC0 license.

B0 inhomogeneity mappings

A total of 4 fieldmaps were found available within the input BIDS structure for this particular subject. A B0-nonuniformity map (or

FieldMap) was estimated based on two (or more) echo-planar imaging (EPI) references with topup.94
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Anatomical data

A total of 5 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were corrected for intensity non-unifor-

mity (INU) with N4BiasFieldCorrection,95 distributed with ANTs 2.3.3.76 The T1w-reference was then skull-stripped with a Nipype

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmen-

tation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast

(FSL 6.0.5.1:57b0177496). A T1w-reference map was computed after registration of 5 T1w images (after INU-correction) using mri_

robust_template (FreeSurfer 6.0.175). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.197), and the brain mask

estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmen-

tations of the cortical gray-matter of Mindboggle.98 Volume-based spatial normalization to one standard space

(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted

versions of both T1w reference and the T1w template. The following template was selected for spatial normalization: ICBM 152

Nonlinear Asymmetrical template version 2009c99 (TemplateFlow ID: MNI152NLin2009cAsym).

Functional data

For each of the 72 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was performed. First,

a reference volume and its skull-stripped version were generated by aligning and averaging 1 single-band references (SBRefs).

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and trans-

lation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 6.0.5.1:57b01774100). The estimated

FieldMap was then aligned with rigid-registration to the target EPI (echo-planar imaging) reference run. The field coefficients

were mapped on to the reference EPI using the transform. BOLD runs were slice-time corrected to 0.7s (0.5 of slice acquisition

range 0s-1.4s) using 3dTshift from AFNI.101 The BOLD reference was then co-registered to the T1w reference using bbregister

(FreeSurfer) which implements boundary-based registration.102 Co-registration was configured with twelve degrees of freedom

to account for distortions remaining in the BOLD reference. First, a reference volume and its skull-stripped version were generated

using a custom methodology of fMRIPrep. Several confounding time-series were calculated based on the preprocessed BOLD:

framewise displacement (FD), DVARS and three region-wise global signals. FD was computed using two formulations following

Power et al.103 (absolute sum of relative motions) and Jenkinson et al.100 (relative root mean square displacement between affines)

FD and DVARS are calculated for each functional run, both using their implementations in Nipype (following the definitions by Po-

wer et al.103). The three global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of

physiological regressors were extracted to allow for component-based noise correction (CompCor104). Principal components

are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for

the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated

from the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+-

WM) are generated in anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding the masks

by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This

mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not

extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space and binarized by

thresholding at 0.99 (as in the original implementation). Components are also calculated separately within the WM and CSF masks.

For each CompCor decomposition, the k components with the largest singular values are retained, such that the retained com-

ponents’ time series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal).

The remaining components are dropped from consideration. The head-motion estimates calculated in the correction step were

also placed within the corresponding confounds file. The confound time series derived from head motion estimates and global

signals were expanded with the inclusion of temporal derivatives and quadratic terms for each.105 Frames that exceeded a

threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated as motion outliers. The BOLD time-series were resampled

into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and

its skull-stripped version were generated using a custom methodology of fMRIPrep. The BOLD time-series were resampled

onto the following surfaces (FreeSurfer reconstruction nomenclature): fsnative. All resamplings can be performed with a single

interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion

correction when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings were per-

formed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other ker-

nels.106 Non-gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.8.1,79 mostly within the functional processing workflow. For more details of

the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

fMRI GLM
Functional localizer GLM

FitLins78 was used to run the general linear model (GLM) and compute first-level analyses for each localizer task. Block presentations

were convolved with a Statistical Parametric Mapping (SPM) hemodynamic response function (HRF). Translation and rotation motion

parameters were included. Data were smoothed using a 4 mm FWHM kernel.
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Main task GLM

Following preprocessing, data were smoothed using a 3 mm FWHM kernel implemented in the smooth_img function from nilearn.79

Although the EPI data were morphed to a common space by default in fMRIPrep, all analyses took place in the subject’s native volu-

metric space and were morphed to an individual subject’s surface only for visualization.

Because of the denoising procedure ofGLMsingle, we did not include motion correction parameters in the GLM.GLMsingle77 was

used to estimate the individual trial responses for themain fMRI experiment.We used all three processing stages ofGLMsingle: fitting

a library of HRFs in individual voxels,GLMdenoise,107 and fractional ridge regression. Due to memory considerations, we fit the GLM

separately for each participant and session. To prevent contamination of the training set by the test set, we did not allowGLMsingle to

scale the final estimates or convert the values into percent signal change. Instead, within a particular session, the training data were

normalized, and the test data were normed by the learned mean and standard deviation from training.

ROI definition in native space
For each region, parcels from an appropriate source (see below) were first warped from MNI space into each subject’s native space

using antsApplyTransforms.76 Following the definition of each ROI, we removed overlapping voxels between ROIS as well as voxels

outside of the reliability mask. We combined ROIs across hemispheres.

Though we included theory of mind and biological motion tasks, we do not include ROI results from these localizers. In the case of

theory of mind, while we were able to consistently localize the temporal parietal junction (TPJ) in individual subjects, we found in early

analyses that the localized TPJ fell almost entirely outside the reliability mask, which is also true of other studies of naturalistic action

recognition.3 Because our ROI analysis was limited to voxels within the ROI and reliability mask, we chose not to model responses in

the TPJ. For the biological motion task on the other hand, we were not able to localize the STS biomotion region in individual subjects

using either a biological motion minus scrambled biological motion108 or minus translation motion contrast.86 Others have success-

fully localized biomotion-STS using biological motion minus rigid body motion,47 but we did not include the rigid body moiton con-

dition in our localizer. Due to our inability to find consistent biomotion responses, we do not report biomotion-STS results here.

Anatomical ROIs (EVC and MT)

Probabilistic parcels from Wang et al.34 were first warped from MNI space into each subject’s native space using antsApplyTrans-

forms from ANTS.76 EVC was defined as the combination of the V1v, V1d, V2v, and V2d probabilistic parcel. MT was defined as the

full probabilistic parcel. The Wang et al.34 atlas is defined in fsaverage space. Due to variability in sulcal folding in individuals in this

region of cortex, this method of defining MT using the atlas is a limitation in the current study.

Anatomically constrained functional ROIS (pSTS-SI and aSTS-SI)

Looking at the contrast between social interactions and nonsocial actions in the point light figures from Isik et al.,4 we noticed that the

most active voxels were in more anterior regions than previously reported.4 For this reason, we defined two separate social interac-

tion (SI) functional ROIs by dividing the STS parcel from Deen et al.47 in half along the posterior-anterior axis. We defined both pos-

terior (pSTS-SI) and anterior (aSTS-SI) as the top ten percent most active voxels from the social interaction minus nonsocial action

contrast.

Functional ROIs (FFA, STS-Face, PPA, EBA, and LOC)

We used ROI parcels from Julian et al.70 and Deen et al.47 to localize common visual category selective regions. We removed voxels

that were not present in an ROI in at least half of the original subjects. The top ten percent of voxels within the parcel was defined as

the ROI in an individual participant. From the face, body, object, scene task, contrasts were defined to localize FFA and STS-Face

(faces minus objects), PPA (scenes minus objects), EBA (bodies minus objects), and LOC (objects minus scrambled objects). For

sub-01, there were no scrambled objects presented in the localizer, so LOC was defined using an objects-minus-scenes contrast.

Voxel-wise encoding models
Split-half reliability

The quality of the data in the test set was evaluated by computing the split-half reliability within-subject. We averaged response from

interleaved runs and calculated the correlation between the two halves of the data. The reliability of the data was liberally thresholded

at the critical value for a one-tailed uncorrected significant correlation (r(48) = 0.117, p < 0.05).

Model training and evaluation

Both model training and evaluation were done within-subject. We used cross-validation in the training set to finalize the modeling

procedure including decisions such as fMRI preprocessing decisions and using OLS regression and variance partitioning. Analyses

reported here on the held-out test set.

Before model fitting, we masked neural data to the reliable voxels and averaged across repetitions. We normalized features for the

training videos, and the test set was normed by the mean and standard deviation of the training set.

Because themaximum number of features (20 AlexNet-conv2, 3motion energy, and 9 annotated features) relative to the number of

samples (200 videos) was low, we fit an ordinary least squares (OLS) model. Others have also argued that regularized regression,

though more common in voxel-wise encoding analyses, complicates variance partitioning analyses.109 Thus, we fit the OLS model

in training data and predicted the response in the test data using the LinearRegression from scikit-learn.73 The sign-squared corre-

lation between the predicted response and true response was the measure of model performance. We opted for the sign-squared

correlation as opposed to simply the correlation in order to maintain consistency between standard and variance partitioning ana-

lyses as the latter requires squaring. However, squaring the correlationwithoutmaintaining the sign result in the same numerical value
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for both good prediction (r = 0.5, r2 = 0.25, signed r2 = 0.25) and extremely poor prediction (r = -0.5, r2 = 0.25, signed r2 = -0.25), which

is particularly problematic in computing the permuted null distribution.

We used permutation testing to test significance by randomly shuffling stimulus labels in the test set and repeating the prediction

procedure ten thousand times to estimate a null distribution. To estimate variance, we performed bootstrapping over random paired

samples of the data over ten thousand resamples.

We fit several models described in detail in the corresponding Results sections.

ROI analysis

Following voxel-wise encoding (for all models used), we averaged the prediction across each ROI in each subject. We did the same

for the distributions estimated by permutation testing and bootstrapping. To determine the significance at the ROI level, we

compared the observed ROI-average prediction to the estimated ROI-average null distribution and calculated one-tailed probability

of the observed result in the null distribution.Within subject andROI, we FDR corrected formultiple comparisons across categories of

features or individual features.

To calculate the group-level ROI results, we calculated the average prediction and distributions estimated by permutation testing

and bootstrapping across subject within each ROI. To calculate significance, we computed the one-tailed probability of the observed

average response across subjects given the estimated null distribution across subjects. Within an ROI, we used FDR correction to

correct for multiple comparisons across features or category of features.

Variance partitioning

To determine whether a given feature category or individual feature explained unique variance in a given ROI, we used variance par-

titioning. We did this by taking the variance explained by the full model with all features minus the variance explained by the full model

without the category or feature of interest. We again used permutation testing and bootstrapping (ten thousand iterations each) to

estimate the significance and variance of the model performance, respectively.

Whole-brain preference maps and feature prediction

Voxel-wise significance was computed as described in model training and evaluation. We corrected the p-values for multiple com-

parisons using FDR correction. Whole-brain results are the visualization of these results morphed to the cortical surface.

The preference maps were computed by first finding the voxels that were significantly predicted by a single category and labeled

according to that category. Then if any voxel was predicted by more than one category, we simply found which category maximally

predicted the voxels and assigned that label to the voxel. We then morphed this to the surface of each individual subject and visu-

alized the result.

Evaluating face-related effects
Nonparametric ANOVA

To compare the relative responses between categories and ROIs, we computed a nonparametric ANOVA. To do this we calculated

the difference in each of two ROIs between the prediction accuracies of two categories of interest, and then calculated the difference

of differences between ROIs. To assess significance, we performed permutation testing by shuffling video labels and repeating the

above procedure.

Face-feature correlation

In a post-hoc analysis, we asked directly whether descriptors of the face size and location correlated with our annotated features. We

computed the correlation between each feature and face area (the sum of the area of the two face bounding boxes averaged across

frames) and centrality (the minimum distance of the two bounding boxes from the center of the frame averaged across frames). We

then tested for significance by computing the permuted null distribution over five thousand iterations. Finally, we corrected for mul-

tiple comparisons across features using FDR correction.

Eye tracking
Heatmaps

To summarize the pattern of fixations, we computed a heatmap of participant’s fixation on each trial with no more than 30% of sam-

ples missing (as the result of blinks or lost tracks), which corresponds to around 1 s of the 3s video. This resulted in the removal of a

small number of trials on average across participants (M = 5.30%, SD = 3.93%). The heatmap was computed as the 2D histogram of

the eye-tracking samples with twenty bins along each dimension (400 total bins).

Within- and between-subject reliability

To compute the within-subject reliability, we averaged the heatmaps on every other presentation and computed the Pearson corre-

lation between the heatmaps on odd and even repetitions for every video. We report the within-subject reliability averaged across all

videos.

For the between-subject reliability, we averaged the heatmaps across all presentations of each video. Then for a given participant,

we correlated their heatmap with the average of all other subjects’ heatmap for a given video and repeated for every video. We report

the between-subject reliability averaged across videos.

Proportion of time looking at faces

To compute the proportion of time that participants looked faces, we summed the heatmap cells that overlapped with the face

bounding boxes for each video and divided by the total number of usable samples. We averaged the proportions across repetitions

of the same video.
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Feature correlation

We related the feature annotations to the eye tracking data in two ways. First, we asked whether the consistency in viewing pattern

across repetitions of the same video was related to the content of the video. Second, we asked whether the proportion of time spent

looking at faces was related to the content of the video. To address both of the questions, we computed the Pearson correlation be-

tween the feature ratings and the eye tracking data (either the within-subject correlation or the proportion looking at faces). We used

permutation testing to test significance within-subject by randomly shuffling stimulus labels in the test set and repeating the predic-

tion procedure five thousand times to estimate a null distribution. To calculate group-level significance, we computed the two-tailed

probability of the observed average response across subjects given the estimated null distribution across subjects. We corrected for

multiple comparisons across features using FDR correction.

Spatial expanse and communication reliability comparison

To comparewhether within-subject reliability wasmore related to spatial expanse or communication.We first computed the absolute

value of the correlation of reliability with spatial expansion and communication (and the corresponding permuted distributions). While

it is meaningful that the correlation between spatial expanse is negative (participants looking pattern becomes less reliable as the

spatial expanse becomes larger), here we are only interested in whether the magnitude of the relation is greater for spatial expanse

than communication. Thus, we compared the difference in magnitude to the difference in the null distribution and computed the two-

tailed probability of the difference.
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After publication, we noted an error in the color bar label in Figures 2B and S2D–S2G stating that the brainmaps reported the squared

split-half reliability when the plotted data were not squared.We have corrected the color bar label in these plots. No other results were

affected by the error, and the error does not affect the conclusions of the manuscript. We apologize for our mistake.
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